【題目】如圖,ABC中,AB=AC=12厘米,BC=9厘米,點DAB的中點,如果點P在線段BC上以v厘米/秒的速度由B點向C點運動,同時點Q在線段CA上由C點向A點運動。若點Q的運動速度為3厘米/秒,則當BPDCQP全等時,v的值為_____________

【答案】2.253

【解析】

分兩種情況討論:①若△BPD≌△CPQ,根據(jù)全等三角形的性質(zhì),則BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),根據(jù)速度、路程、時間的關系即可求得;②若△BPD≌△CQP,則CP=BD=6厘米,BP=CQ,得出 ,解得:v=3

解:∵△ABC中,AB=AC=12厘米,點DAB的中點,
BD=6厘米,
若△BPD≌△CPQ,則需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),
∵點Q的運動速度為3厘米/秒,
∴點Q的運動時間為:6÷3=2s),
v=4.5÷2=2.25(厘米/秒);
若△BPD≌△CQP,則需CP=BD=6厘米,BP=CQ,

則有

解得:v=3

v的值為:2.253厘米/

故答案為:2.253.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,△ABC繞點C順時針旋轉(zhuǎn)一定角度得到△DEC,點D恰好落在AB邊上,連接AE. 求:

(1)旋轉(zhuǎn)角的度數(shù);

(2)AE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某長途汽車客運公司規(guī)定旅客可以免費攜帶一定質(zhì)量的行李,當行李的質(zhì)量超過規(guī)定時,需付的行李費y(元)與行李質(zhì)量x(kg)之間的函數(shù)表達式為,這個函數(shù)的圖像如圖所示,求:

(1)kb的值;

(2)旅客最多可免費攜帶行李的質(zhì)量;

(3)行李費為4~15元時,旅客攜帶行李的質(zhì)量為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A90°AB3m,BC12m,CD13m,DA4m,若每平方米草皮需要200元,則要投入_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CDAB邊上的高,AD8,CD4,BD3.動點P從點A出發(fā),沿射線AB運動,速度為1個單位/秒,運動時間為t秒.

1)當t為何值時,△PDC≌△BDC

2)當t為何值時,△PBC是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某機械租賃公司有同一型號的機械設備40套,經(jīng)過一段時間的經(jīng)營發(fā)現(xiàn):當每套機械設備的月租金為270元時,恰好全部租出,在此基礎上,當每套設備的月租金提高10元時,這種設備就少租一套,且未租出一套設備每月需要支出費用(維護費、管理費等)20.

1)設每套設備的月租金為(元),用含的代數(shù)式表示未租出的設備數(shù)(套)以及所有未租出設備(套)的支出費用;

2)租賃公司的月收益能否達到11040元?此時應該出租多少套機械設備?每套月租金是多少元?請簡要說明理由;

3)租賃公司的月收益能否在11040元基礎上再提高?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場老板對一種新上市商品的銷售情況進行記錄,已知這種商品進價為每件40元,經(jīng)過記錄分析發(fā)現(xiàn),當銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關系可近似地看作一次函數(shù),其圖象如圖所示.

(1)求y與x的函數(shù)關系式.

(2)設商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關系式;

(3)如果想要每月獲得2400元的利潤,那么銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答.

(1)把ABC繞點P旋轉(zhuǎn)180°得A′B′C′.

(2)把ABC向右平移7個單位得A″B″C″.

(3)A′B′C′與A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.

查看答案和解析>>

同步練習冊答案