【題目】某采摘農(nóng)場(chǎng)計(jì)劃種植A,B兩種草莓共6畝,根據(jù)表格信息,解答下列問(wèn)題:

項(xiàng)目 品種

A

B

年畝產(chǎn)(單位:千克)

1200

2000

采摘價(jià)格
(單位:元/千克)

60

40


(1)若該農(nóng)場(chǎng)每年草莓全部被采摘的總收入為460000元,那么A、B兩種草莓各種多少畝?
(2)若要求種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓多少畝時(shí),可使該農(nóng)場(chǎng)每年草莓全部被采摘的總收入最多?并求出最多總收入.

【答案】
(1)解:設(shè)該農(nóng)場(chǎng)種植A種草莓x畝,B種草莓(6﹣x)畝,

依題意,得:60×1200x+40×2000(6﹣x)=460000,

解得:x=2.5,

則6﹣x=3.5,

答:A種草莓種植2.5畝,B種草莓種植3.5畝


(2)解:由x≥ (6﹣x),

解得x≥2

設(shè)農(nóng)場(chǎng)每年草莓全部被采摘的收入為y元,則:

y=60×1200x+40×2000(6﹣x)=﹣8000x+480000,

∴當(dāng)x=2時(shí),y有最大值為464000,

答:種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓2畝時(shí),可使農(nóng)場(chǎng)每年草莓全部被采摘的總收入最多


【解析】(1)根據(jù)等量關(guān)系:總收入=A地的畝數(shù)×年畝產(chǎn)量×采摘價(jià)格+B地的畝數(shù)×年畝產(chǎn)量×采摘價(jià)格,列方程求解.(2)這是一道只有一個(gè)函數(shù)關(guān)系式的求最值問(wèn)題,根據(jù)題意確定自變量的取值范圍,由函數(shù)y隨x的變化求出最大利潤(rùn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車(chē)由甲地開(kāi)往乙地,一列慢車(chē)由乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),勻速運(yùn)動(dòng),快車(chē)離乙地的路程y1(km)與行駛的時(shí)間x(h)之間的函數(shù)關(guān)系,如圖中線(xiàn)段AB所示,慢車(chē)離乙地的路程y2(km)與行駛的時(shí)間x(h) 之間的函數(shù)關(guān)系,如圖中線(xiàn)段OC所示,根據(jù)圖象進(jìn)行以下探究.(1)甲、乙兩地之間的距離為   km;(2)線(xiàn)段AB的解析式為   ;線(xiàn)段OC的解析式為   .(3)設(shè)快、慢車(chē)之間的距離為y(km),請(qǐng)直接寫(xiě)出y與行駛時(shí)間x(h)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按所選的第一小題計(jì)分.

若單項(xiàng)式﹣xmyn+4 5x2y 是同類(lèi)項(xiàng),則 nm 的值為____.

實(shí)施西部大開(kāi)發(fā)戰(zhàn)略是黨中央的重大決策,我國(guó)國(guó)土面積約為960 萬(wàn)平方千米而我國(guó)西部地區(qū)的面積占我國(guó)國(guó)土面積的 ,用科學(xué)記數(shù)法表示我國(guó)西部地區(qū)的面積約為_____平方千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三角形內(nèi)有n個(gè)點(diǎn),在這些點(diǎn)及三角形頂點(diǎn)之間用線(xiàn)段連接起來(lái),使得這些線(xiàn)段互不相交,且又能把原三角形分割為不重疊的小三角形.如圖:若三角形內(nèi)有1個(gè)點(diǎn)時(shí)此時(shí)有3個(gè)小三角形;若三角形內(nèi)有2個(gè)點(diǎn)時(shí),此時(shí)有5個(gè)小三角形.則當(dāng)三角形內(nèi)有3個(gè)點(diǎn)時(shí),此時(shí)有個(gè)小三角形;當(dāng)三角形內(nèi)有n個(gè)點(diǎn)時(shí),此時(shí)有個(gè)小三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開(kāi)展課外球類(lèi)特色的體育活動(dòng),決定開(kāi)設(shè)A:羽毛球、B:籃球、C:乒乓球、 D:足球四種球類(lèi)項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題.

(1)樣本中最喜歡A項(xiàng)目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù)是 度;

(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校有學(xué)生3000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡足球的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,OAC上一動(dòng)點(diǎn)(不與點(diǎn)A、C重合),過(guò)O作直線(xiàn)MN∥BC,設(shè)MN交∠BCA的平分線(xiàn)于點(diǎn)E,交∠BCA的外角平分線(xiàn)于點(diǎn)F

1OEOF相等嗎?證明你的結(jié)論;

2)試確定點(diǎn)O的位置,使四邊形AECF是矩形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小剛在課外書(shū)中看到這樣一道有理數(shù)的混合運(yùn)算題:

計(jì)算:

她發(fā)現(xiàn),這個(gè)算式反映的是前后兩部分的和,而這兩部分之間存在著某種關(guān)系,利用這種關(guān)系,他順利地解答了這道題。

(1)前后兩部分之間存在著什么關(guān)系?

(2)先計(jì)算哪步分比較簡(jiǎn)便?并請(qǐng)計(jì)算比較簡(jiǎn)便的那部分。

(3)利用(1)中的關(guān)系,直接寫(xiě)出另一部分的結(jié)果。

(4)根據(jù)以上分析,求出原式的結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售進(jìn)價(jià)為2元的雪糕,在銷(xiāo)售中發(fā)現(xiàn),此商品的日銷(xiāo)售單價(jià)x(元)與日銷(xiāo)售量y(根)之間有如下關(guān)系:

日銷(xiāo)售單價(jià)x(元)

3

4

5

6

日銷(xiāo)售量y(根)

40

30

24

20


(1)猜測(cè)并確定y和x之間的函數(shù)關(guān)系式;
(2)設(shè)此商品銷(xiāo)售利潤(rùn)為W,求W與x的函數(shù)關(guān)系式,若物價(jià)局規(guī)定此商品最高限價(jià)為10元/根,你是否能求出商品日銷(xiāo)售最大利潤(rùn)?若能請(qǐng)求出,不能請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫(xiě)出一種即可)

關(guān)系:①ADBC,AB=CD③∠A=C,④∠B+C=180°.

已知:在四邊形ABCD中,      ,      ;

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案