如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C.若∠A=40°.∠B′=110°,則∠BCA′= °
80
【分析】
本題主要考查旋轉(zhuǎn)的性質(zhì).根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形內(nèi)角和可得∠A′CB′的度數(shù),進而得到∠ACB的度數(shù),再由條件將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度數(shù).
【解答】
解:根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,
∵∠A=40°,
∴∠A′=40°,
∵∠B′=110°,
∴∠A′CB′=180°-110°-40°=30°,
∴∠ACB=30°,
∵將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′,
∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°,
故填80.
科目:初中數(shù)學 來源: 題型:
七年級二班教室后墻上的“學習園地”是一個長方形,它的面積為6a2-9ab+3a,其中一邊長為3a,則這個“學習園地”的另一邊長為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
觀察下列算式:
(1)由此可推斷: = ;
(2)請用含字母m (m為正整數(shù))的等式表示(1)中的一般規(guī)律 ;
(3)仿照以上方法可推斷: = ;
(4)仿照以上方法解方程: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A、B 的對應點C,D,連接AC,BD,CD.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC;
(2)在y軸上是否存在一點P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com