【題目】如圖,在△ABC中,點(diǎn)D,E分別為AB,AC的中點(diǎn),則△ADE與四邊形BCED的面積比為( )

A.1:1
B.1:2
C.1:3
D.1:4

【答案】C
【解析】∵D、E分別為△ABC的邊AB、AC上的中點(diǎn),

∴DE是△ABC的中位線,

∴DE∥BC,DE= BC,

∴△ADE∽△ABC,

∴△ADE的面積:△ABC的面積=( 2=1:4,

∴△ADE的面積:四邊形BCED的面積=1:3;

所以答案是:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形中位線定理的相關(guān)知識,掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.直線PE從B點(diǎn)出發(fā),以2cm/s的速度向點(diǎn)A方向運(yùn)動,并始終與BC平行,與AC交于點(diǎn)E.同時(shí),點(diǎn)F從C點(diǎn)出發(fā),以1cm/s的速度沿CB向點(diǎn)B運(yùn)動,設(shè)運(yùn)動時(shí)間為t (s)(0<t<5).

(1)當(dāng)t為何值時(shí),四邊形PFCE是矩形?
(2)設(shè)△PEF的面積為S(cm2),求S與t的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使△PEF的面積是△ABC面積的 ?若存在,求出t的值;若不存在,請說明理由.
(4)連接BE,是否存在某一時(shí)刻t,使PF經(jīng)過BE的中點(diǎn)?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABAD,∠ABC=∠ADC.試判斷ACBD的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形中, 的中點(diǎn), 上一點(diǎn),且.求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動,運(yùn)動到點(diǎn)A即停止;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動,運(yùn)動到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動的時(shí)間為ts.

當(dāng)t為何值時(shí),四邊形ABQP是矩形;

當(dāng)t為何值時(shí),四邊形AQCP是菱形;

分別求出(2)中菱形AQCP的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣4,﹣1)、B(﹣2,1),將線段AB平移至線段CD,使點(diǎn)A的對應(yīng)點(diǎn)Cx軸的正半軸上,點(diǎn)D在第一象限.

1)若點(diǎn)C的坐標(biāo)(k0),求點(diǎn)D的坐標(biāo)(用含k的式子表示);

2)連接BD、BC,若三角形BCD的面積為5,求k的值;

3)如圖2,分別作∠ABC和∠ADC的平分線,它們交于點(diǎn)P,請寫出∠A、和∠P和∠BCD之間的一個(gè)等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了幫助本市一名患白血病的高中生,某班15名同學(xué)積極捐款,他們捐款數(shù)額如下表:

捐款的數(shù)額(單位:元)

5

10

20

50

100

人數(shù)(單位:個(gè))

2

4

5

3

1

關(guān)于這15名同學(xué)所捐款的數(shù)額,下列說法正確的是

A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我校書香校園活動中,某數(shù)學(xué)小組為了解學(xué)生家庭藏書情況,隨機(jī)抽取我校部分學(xué)生進(jìn)行調(diào)查,并繪制成部分統(tǒng)計(jì)圖如下表:

類別

家庭藏書情況統(tǒng)計(jì)表

學(xué)生人數(shù)

20

50

66

根據(jù)以上信息,解答下列問題:

(1)參加調(diào)查的學(xué)生人數(shù)為多少,a等于多少,本次調(diào)查結(jié)果的中位數(shù)在哪一類.

(2)在扇形統(tǒng)計(jì)圖中,對應(yīng)扇形的圓心角為多少.

(3)若我校有4500名學(xué)生,請估計(jì)全校學(xué)生中藏書200本以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=﹣2x2﹣1向上平移若干個(gè)單位,使拋物線與坐標(biāo)軸有三個(gè)交點(diǎn),如果這些交點(diǎn)能夠成等邊三角形,那么平移的距離為( )
A.1個(gè)單位
B. 個(gè)單位
C. 個(gè)單位
D. 個(gè)單位

查看答案和解析>>

同步練習(xí)冊答案