【題目】金山超市現(xiàn)有甲、乙兩種糖果若干kg,兩種糖果的售價(jià)和進(jìn)價(jià)如表

糖果

甲種

乙種

售價(jià)

36/kg

20/kg

進(jìn)價(jià)

30/kg

16/kg

(1)超市準(zhǔn)備用甲、乙兩種糖果混合成雜拌糖出售,混合后糖果的售價(jià)是27.2/kg,現(xiàn)要配制這種雜拌糖果100/kg,需要甲、乙兩種糖果各多少千克?

(2)“六一兒童節(jié)前夕,超市準(zhǔn)備用5000元購(gòu)進(jìn)甲、乙兩種糖果共200kg,如何進(jìn)貨才能使這批糖果獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:進(jìn)貨量只能為整數(shù))

【答案】(1)需要用甲種糖果45kg,乙種糖果55kg來配制雜拌糖;(2)甲種糖果進(jìn)貨128kg,乙種糖果進(jìn)貨72kg,這批糖果的最大利潤(rùn)為1056元.

【解析】

(1)根據(jù)題目中等量關(guān)系列出方程組,利用代入消元法解二元一次方程組即可得出;

(2)根據(jù)題目中數(shù)量關(guān)系先列出關(guān)于進(jìn)貨量m的一元一次不等式,求出m的最大值,然后列出利潤(rùn)y與進(jìn)貨量m的一次函數(shù),一次函數(shù)的最大值即為最大利潤(rùn)

(1)設(shè)需要用甲種糖果xkg,乙種糖果ykg,

根據(jù)題意,得

解這個(gè)方程組,得

所以,需要用甲種糖果45kg,乙種糖果55kg來配制雜拌糖.

(2)設(shè)甲種糖果進(jìn)貨mkg,根據(jù)題意,得

30×m+16(200-m)≤5000,

解這個(gè)不等式,得m≤,

若這批糖果的銷售利潤(rùn)為y,

則有y=(36﹣30)m+(20﹣16)×(200﹣m)=2m+800,

ym的一次函數(shù),且k=2>0,

ym的增大而增大,又m≤,

∵進(jìn)貨量m只能為整數(shù),

∴當(dāng)m=128時(shí),y最大=128×2+800=1056(元)

所以,甲種糖果進(jìn)貨128kg,乙種糖果進(jìn)貨72kg,這批糖果的最大利潤(rùn)為1056元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).

(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;

(2)寫出點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P'的坐標(biāo);

(3)求P'AO的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,分別是,上的動(dòng)點(diǎn),將沿折疊.

(1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),如圖1.,,則的周長(zhǎng)為_____.

(2)定義:若在三角形中,期中一條邊是另一條邊的2倍,則稱這個(gè)三角形為倍邊三角形”.當(dāng)點(diǎn)與點(diǎn)重合時(shí),如圖2.,則是倍邊三角形嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)y是關(guān)于x的一次函數(shù),其圖象與y軸交點(diǎn)的縱坐標(biāo)為﹣10,且當(dāng)x1時(shí),y=﹣5

1)求該一次函數(shù)圖象與坐標(biāo)軸圍成的三角形面積;

2)當(dāng)函數(shù)值為時(shí),自變量的取值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ay軸上,其坐標(biāo)為(0,4),x軸上的一動(dòng)

P從原點(diǎn)O出發(fā),沿x軸正半軸方向運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,以P為直角頂點(diǎn)

第一象限內(nèi)作等腰RtAPB.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.

1)填空:當(dāng)t2時(shí),點(diǎn)B的坐標(biāo)為.

2)在P點(diǎn)的運(yùn)動(dòng)過程中,當(dāng)ABx軸時(shí),求t的值;

3)通過探索,發(fā)現(xiàn)無論P點(diǎn)運(yùn)動(dòng)到何處,點(diǎn)B始終在一直線上,試求出該直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC90°,AD⊥BCD,將AB邊沿AD折疊,發(fā)現(xiàn)B點(diǎn)的對(duì)應(yīng)點(diǎn)E正好在AC的垂直平分線上,則∠C_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖 1 所示放置,圖 2 是由它抽像出的幾何圖形,B, C, E在同一 條直線上,連結(jié)DC.

(1)請(qǐng)找出圖 2 中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字 );

(2)證明:DC ⊥ BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對(duì)于任何數(shù)a,符號(hào)[a]表示不大于a的最大整數(shù).

例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.

(1)[﹣]=   

(2)如果[a]=3,那么a的取值范圍是   

(3)如果[]=﹣3,求滿足條件的所有整數(shù)x.

查看答案和解析>>

同步練習(xí)冊(cè)答案