【題目】問題:探究函數(shù)y|x|2的圖象與性質(zhì).

小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y|x|2的圖象與性質(zhì)進(jìn)行了探究.

下面是小華的探究過程,請(qǐng)補(bǔ)充完整:

1)在函數(shù)y|x|2中,自變量x可以是任意實(shí)數(shù);

2)如表是yx的幾組對(duì)應(yīng)值

x

3

2

1

0

1

2

3

y

1

0

1

2

1

0

m

m等于多少;

②若An,2018),B2020,2018)為該函數(shù)圖象上不同的兩點(diǎn),則n等于多少;

3)如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:該函數(shù)的最小值為多少;該函數(shù)圖象與x軸圍成的幾何圖形的面積等于多少;

4)已知直線y1x與函數(shù)y|x|2的圖象交于CD兩點(diǎn),當(dāng)y1y時(shí),試確定x的取值范圍.

【答案】2)①m1;②﹣2020;(3)該函數(shù)的最小值為﹣2;該函數(shù)圖象與x軸圍成的幾何圖形的面積是4;(4)當(dāng)y1y時(shí)x的取值范圍是﹣1x3

【解析】

2)①把x3代入y|x|2,即可求出m

②把y2018代入y|x|2,即可求出n

3)畫出該函數(shù)的圖象即可求解;

4)在同一平面直角坐標(biāo)系中畫出函數(shù)y1x與函數(shù)y|x|2的圖象,根據(jù)圖象即可求出y1y時(shí)x的取值范圍.

2)①把x3代入y|x|2,得m1;

②把y2018代入y|x|2,得2018|x|2,

解得x=﹣20202020

An,2018),B2020,2018)為該函數(shù)圖象上不同的兩點(diǎn),

n=﹣2020;

3)該函數(shù)的圖象如圖,

由圖可得,該函數(shù)的最小值為﹣2;該函數(shù)圖象與x軸圍成的幾何圖形的面積是×4×24

4)在同一平面直角坐標(biāo)系中畫出函數(shù)y1x與函數(shù)y|x|2的圖象,

由圖形可知,當(dāng)y1y時(shí)x的取值范圍是﹣1≤x≤3

故答案為:(2)①m1;②﹣2020;(3)該函數(shù)的最小值為﹣2;該函數(shù)圖象與x軸圍成的幾何圖形的面積是4;(4)當(dāng)y1y時(shí)x的取值范圍是﹣1≤x≤3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.

(1)根據(jù)圖示填寫下表:

平均數(shù)/

中位數(shù)/

眾數(shù)/

A

______

85

______

B

85

______

100

(2)結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;

(3)計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

身高情況分組表(單位:cm)

組別

身高

A

x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

x≥170

根據(jù)圖表提供的信息,回答下列問題:

(1)樣本中,男生的身高眾數(shù)在   組,中位數(shù)在   組;

(2)樣本中,女生身高在E組的人數(shù)有   人;

(3)已知該校共有男生400人,女生380人,請(qǐng)估計(jì)身高在160≤x<170之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.
其中正確的結(jié)論有( )

A. 5個(gè) B. 4個(gè)

C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了對(duì)某市區(qū)全民閱讀狀況進(jìn)行調(diào)查和評(píng)估,有關(guān)部門隨機(jī)抽取了部分市民進(jìn)行每天閱讀時(shí)間情況的調(diào)查,并根據(jù)調(diào)查結(jié)果制做了如下尚不完整的頻數(shù)分布表(被調(diào)查者每天的閱讀時(shí)間均在0120分鐘之內(nèi))

閱讀時(shí)間x(分鐘)

0≤x30

30≤x60

60≤x90

90≤x≤120

頻數(shù)

450

400

m

50

頻率

0.45

0.4

0.1

n

1)被調(diào)查的市民人數(shù)為多少,表格中,mn為多少;

2)補(bǔ)全頻數(shù)分布直方圖;

3)某市區(qū)目前的常住人口約有118萬人,請(qǐng)估計(jì)該市區(qū)每天閱讀時(shí)間在60120分鐘的市民大約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE∠BAC的外角平分線AD相交于點(diǎn)P,分別交ACBC的延長(zhǎng)線于E,D.過PPF⊥ADAC的延長(zhǎng)線于點(diǎn)H,交BC的延長(zhǎng)線于點(diǎn)F,連接AFDH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅家有一塊L形的菜地,要把L形的菜地按如圖所示分成兩塊面積相等的梯形,種上不同的蔬菜.這兩個(gè)梯形的上底都是a m,下底都是b m,高都是(b-a) m.

(1)求小紅家這塊L形菜地的面積.(用含a、b的代數(shù)式表示

(2)a2+b2=15,ab=5,求小紅家這塊L形菜地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中, A、B兩點(diǎn)分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點(diǎn)A、B的坐標(biāo);(2)、已知點(diǎn)C(-22),求△BOC的面積;(3)、點(diǎn)P是第一象限角平分線上一點(diǎn),若,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如.善于思考的小明進(jìn)行了以下探索:

設(shè)(其中a、b、m、n均為整數(shù)),則有.

.這樣小明就找到了一種把類似的式子化為平方式的方法。

請(qǐng)你仿照小明的方法探索并解決下列問題:(a,b,m,n均為正整數(shù))

(1),用含m、n的式子分別表示a、b,得:a=___,b=___;

(2)當(dāng)a=7,n=1時(shí),填空:7+ =( +2

(3)若,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案