【題目】如圖,在ABCD中,已知AD>AB.
(1)實(shí)踐與操作:作∠BAD的平分線交BC于點(diǎn)E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.
【答案】(1)詳見(jiàn)解析;(2)四邊形ABEF是菱形,理由詳見(jiàn)解析.
【解析】
試題分析:(1)由角平分線的作法容易得出結(jié)果,在AD上截取AF=AB,連接EF;畫出圖形即可;(2)由平行四邊形的性質(zhì)和角平分線得出∠BAE=∠AEB,證出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出結(jié)論.
試題解析:解:(1)如圖所示:
(2)四邊形ABEF是菱形;理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB,
由(1)得:AF=AB,
∴BE=AF,
又∵BE∥AF,
∴四邊形ABEF是平行四邊形,
∵AF=AB,
∴四邊形ABEF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)六位數(shù)左端的數(shù)字是1,如果把左端的數(shù)字1移到右端,那么所得新的六位數(shù)等于原數(shù)的3倍,則原來(lái)的六位數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OM平分∠AOB,MC∥OB,MD⊥OB于D,若∠OMD=75°,OC=8,則MD的長(zhǎng)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運(yùn)算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.求(﹣2)⊕3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△AED為等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.連接BE、CD交于點(diǎn)O,連接AO并延長(zhǎng)交CE為點(diǎn)H.
求證:∠COH=∠EOH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線y=x2﹣mx+9的頂點(diǎn)在x軸上,則m的值為( )
A.6B.﹣6C.±6D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以線段AB的兩個(gè)端點(diǎn)為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于M、N兩點(diǎn),連接MN , 交AB于點(diǎn)D、C是直線MN上任意一點(diǎn),連接CA、CB , 過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E , DF⊥BC于點(diǎn)F .
(1)求證:△AED≌△BFD;
(2)若AB=2,當(dāng)CD的值為多少時(shí),四邊形DECF是正方形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com