【題目】如圖,點(diǎn)上,點(diǎn)外一點(diǎn).于點(diǎn).連接于點(diǎn),作于點(diǎn),交于點(diǎn),連接

1)求證:的切線;

2)若,,求圖中陰影部分的面積.

【答案】1)見(jiàn)解析;(218

【解析】

1)連接OB,由垂徑定理得OP垂直平分AB,進(jìn)而證明△APO≌△BPO,得∠PAO=∠PBO,結(jié)合PA切⊙O于點(diǎn)A, 即可得到結(jié)論;

(2)先證△APB是等邊三角形,設(shè)OBx,OP2x由勾股定理得OB6,結(jié)合三角形的面積公式和扇形的面積公式,即可求解.

1)連接OB,

OPAB,OP經(jīng)過(guò)圓心O,

ACBC

OP垂直平分AB,

APBP

OAOB,OPOP,

∴△APO≌△BPOSSS),

∴∠PAO=∠PBO,

PA切⊙O于點(diǎn)A,

APOA,

∴∠PAO90°,

∴∠PBO=∠PAO90°,

OBBP,

又∵點(diǎn)B在⊙O上,

PB是⊙O的切線;

2)∵PA切⊙O于點(diǎn)A PB切⊙O于點(diǎn)B,

PAPB

∵∠APB60°,

∴△APB是等邊三角形,

PBAB6,

RtOPB中,

∵∠OPB=∠OPAAPB30°,

OP2OB,∠POB60°,

設(shè)OBx,OP2x,

由勾股定理得: x2+62=(2x2

x>0

x6 , OB6,

SOPB×BP×OB×6×618,SDOB,

S陰影SOPBSDOB186π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會(huì),很多學(xué)校都開(kāi)展了冰雪項(xiàng)目學(xué)習(xí).如圖,滑雪軌道由AB,BC兩部分組成,AB,BC的長(zhǎng)度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α20°,BC與水平面的夾角β45°,則他下降的高度為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售一種銷(xiāo)售成本為40/千克的水產(chǎn)品,若按50/千克銷(xiāo)售,一個(gè)月可售出500千克,銷(xiāo)售價(jià)每漲價(jià)1元,月銷(xiāo)售量就減少10千克.

1)寫(xiě)出月銷(xiāo)售利潤(rùn)(單位:元)與售價(jià)(單位:元/千克)之間的函數(shù)關(guān)系式.

2)商場(chǎng)將在月銷(xiāo)售成本不超過(guò)3000元的情況下,使得月銷(xiāo)售利潤(rùn)達(dá)到8000元,銷(xiāo)售單價(jià)應(yīng)定為多少?

3)當(dāng)售價(jià)定為多少元時(shí),會(huì)獲得最大利潤(rùn)?求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,ABAC5sinB,⊙O過(guò)點(diǎn)B、C兩點(diǎn),且⊙O半徑r,則OA的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,將拋物線平移到頂點(diǎn)恰好落在直線上,并設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為.

1)求拋物線的解析式(用含、的代數(shù)式表示);

2)如圖②,與拋物線交于、、三點(diǎn),,軸,,.

①求的面積(用含的代數(shù)式表示);

②若的面積為1,當(dāng)時(shí),的最大值為-3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=-x2+4x+5

(1)用配方法將y=-x2+4x+5化成y=axh2+k的形式;

(2)指出拋物線的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo);

(3)若拋物線上有兩點(diǎn)Ax1,y1),B(x2,y2),如果x1>x2>2,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)DAB邊的中點(diǎn),點(diǎn)EAC中點(diǎn),點(diǎn)F在邊BC上,AFDE于點(diǎn)G,點(diǎn)HFC的中點(diǎn),連接GH

1)如圖1,求證:四邊形GHCE是平行四邊形;

2)如圖2,當(dāng)ABAC,點(diǎn)FBC中點(diǎn)時(shí),在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖中所有長(zhǎng)度等于BF的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,直線軸和軸分別交于點(diǎn),,若拋物線與直線有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列一組方程:①,②,③,…小明通過(guò)觀察,發(fā)現(xiàn)了其中蘊(yùn)含的規(guī)律,并順利地求出了前三個(gè)方程的解第①個(gè)方程的解為;第②個(gè)方程的解為;第③個(gè)方程的解為.若n為正整數(shù),且關(guān)于x的方程的一個(gè)解是,則n的值等于____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案