(2002•淮安)在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的點(diǎn)P有( 。
分析:如果OA為等腰三角形的腰,有兩種可能,以O(shè)為圓心OA為半徑的圓弧與y軸有兩個(gè)交點(diǎn),以A為圓心AO為半徑的圓弧與y軸有一個(gè)交點(diǎn);如果OA為等腰三角形的底,只有一種可能,作線段OA的垂直平分線,與y軸有一個(gè)交點(diǎn);符合條件的點(diǎn)一共4個(gè).
解答:解:分二種情況進(jìn)行討論:
當(dāng)OA為等腰三角形的腰時(shí),以O(shè)為圓心OA為半徑的圓弧與y軸有兩個(gè)交點(diǎn),以A為圓心AO為半徑的圓弧與y軸有一個(gè)交點(diǎn);
當(dāng)OA為等腰三角形的底時(shí),作線段OA的垂直平分線,與y軸有一個(gè)交點(diǎn).
∴符合條件的點(diǎn)一共4個(gè).
故選D.
點(diǎn)評(píng):本題考查了等腰三角形的判定及坐標(biāo)與圖形的性質(zhì);針對(duì)線段OA在等腰三角形中的地位,分類(lèi)討論用畫(huà)圓弧的方式,找與y軸的交點(diǎn),比較形象易懂.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•淮安)在平面直角坐標(biāo)系中,點(diǎn)P(3,-2)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)在(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•淮安)在銳角△ABC中,已知BC=6,∠C=60°,sinA=0.8,求AB和AC的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•淮安)據(jù)有關(guān)部門(mén)統(tǒng)計(jì):20世紀(jì)初全世界共有哺乳類(lèi)和鳥(niǎo)類(lèi)動(dòng)物約13000種,由于環(huán)境等到因素的影響,到20世紀(jì)末這兩類(lèi)動(dòng)物種數(shù)共滅絕約1.9%,其中哺乳類(lèi)動(dòng)物滅絕約3.0%,鳥(niǎo)類(lèi)動(dòng)物滅絕約1.5%.
(1)問(wèn)20世紀(jì)初哺乳類(lèi)動(dòng)物和鳥(niǎo)類(lèi)動(dòng)物各有多少種?
(2)現(xiàn)在人們?cè)絹?lái)越意識(shí)到保護(hù)動(dòng)物就是保護(hù)人類(lèi)自己,到本世紀(jì)末,如果要把哺乳類(lèi)動(dòng)物的滅絕種數(shù)控制在0.9%以內(nèi),其中哺乳類(lèi)動(dòng)物滅絕的種數(shù)與鳥(niǎo)類(lèi)動(dòng)物滅絕的種數(shù)之比約為6:7.為實(shí)現(xiàn)這個(gè)目標(biāo),鳥(niǎo)類(lèi)滅絕不能超過(guò)多少種?(本題所求結(jié)果均精確到十位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•淮安)在平面直角坐標(biāo)系xOy中:已知拋物線y=-
1
2
x2+(m2-m-
5
2
)x+
1
3
(5m+8)
的對(duì)稱(chēng)軸為x=-
1
2
,設(shè)拋物線與y軸交于A點(diǎn),與x軸交于B、C兩點(diǎn)(B點(diǎn)在C點(diǎn)的左邊),銳角△ABC的高BE交AO于點(diǎn)H.
(1)求拋物線的解析式;
(2)在(1)中的拋物線上是否存在點(diǎn)P,使BP將△ABH的面積分成1:3兩部分?如果存在,求出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案