【題目】在△ABC中,∠A=∠B=∠ACB,CD是△ABC的高,CE是∠ACB的角平分線,求∠DCE的度數(shù)。
【答案】15°
【解析】
試題根據(jù)已知條件用∠A表示出∠B和∠ACB,利用三角形的內(nèi)角和求出∠A,再求出∠ACB,然后根據(jù)直角三角形兩銳角互余求出∠ACD,最后根據(jù)角平分線的定義求出∠ACE即可.
試題解析:∵∠A=∠B=∠ACB,設(shè)∠A=x,∴∠B=2x,∠ACB=3x,
∵∠A+∠B+∠ACB=180°,∴x+2x+3x=180°,
解得x=30°,∴∠A=30°,∠ACB=90°,
∵CD是△ABC的高,∴∠ADC=90°,∴∠ACD=90°-30°=60°,
∵CE是∠ACB的角平分線,∴∠ACE=×90°=45°,
∴∠DCE=∠ACD-∠ACE=60°-45°=15°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)與放水時間t(分)有如下關(guān)系:
放水時間(分) | 1 | 2 | 3 | 4 | ... |
水池中水量(m) | 38 | 36 | 34 | 32 | ... |
下列結(jié)論中正確的是
A. y隨t的增加而增大B. 放水時間為15分鐘時,水池中水量為8m3
C. 每分鐘的放水量是2m3D. y與t之間的關(guān)系式為y=38-2t
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).
(1)求反比例函數(shù)的解析式;
(2)反比例函數(shù)的圖象與線段BC交于點D,直線過點D,與線段AB相交于點F,求點F的坐標;
(3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標系xOy中,函數(shù)y=(x>0)的圖象與一次函數(shù)y=kx﹣k的圖象的交點為A(m,2).
(1)求一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點B,若P是x軸上一點,且滿足△PAB的面積是6,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).
(1)點C的坐標是;
(2)將△ABC沿x軸正方向平移得到△A′B′C′,且B,C兩點的對應(yīng)點B′,C′恰好落在反比例函數(shù)y= 的圖象上,求該反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”的故事同學(xué)們都非常熟悉,圖中的線段OD和折線OABC表示“龜兔賽跑”時路程與時間的關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線OABC表示賽跑過程中 的路程與時間的關(guān)系,線段OD表示賽跑過程中 的路程與時間的關(guān)系.賽跑的全程是 米.
(2)兔子在起初每分鐘跑 米,烏龜每分鐘爬 米.
(3)烏龜用了 分鐘追上了正在睡覺的兔子.
(4)兔子醒來,以48千米/時的速度跑向終點,結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個頂點分別為A(1,2),B(4,2),C(4,4).若反比例函數(shù)y= 在第一象限內(nèi)的圖象與△ABC有交點,則k的取值范圍是( )
A.1≤k≤4
B.2≤k≤8
C.2≤k≤16
D.8≤k≤16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上
一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D在AB中點時.
①求證:四邊形BECD是菱形;
②當∠A為多少度時,四邊形BECD是正方形?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com