【題目】如圖,拋物線交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線經(jīng)過(guò)點(diǎn)A,C.
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交直線AC于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
②作點(diǎn)B關(guān)于點(diǎn)C的對(duì)稱點(diǎn),則平面內(nèi)存在直線l,使點(diǎn)M,B,到該直線的距離都相等.當(dāng)點(diǎn)P在y軸右側(cè)的拋物線上,且與點(diǎn)B不重合時(shí),請(qǐng)直接寫(xiě)出直線的解析式.(k,b可用含m的式子表示)
【答案】(1)(2)①或,②直線l的解析式為,或.
【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,C的坐標(biāo),根據(jù)點(diǎn)A,C的坐標(biāo),利用待定系數(shù)法可求出二次函數(shù)解析式;
(2)①由PM⊥x軸可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°兩種情況考慮:(i)當(dāng)∠MPC=90°時(shí),PC∥x軸,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)P的坐標(biāo);(ii)當(dāng)∠PCM=90°時(shí),設(shè)PC與x軸交于點(diǎn)D,易證△AOC∽△COD,利用相似三角形的性質(zhì)可求出點(diǎn)D的坐標(biāo),根據(jù)點(diǎn)C,D的坐標(biāo),利用待定系數(shù)法可求出直線PC的解析式,聯(lián)立直線PC和拋物線的解析式成方程組,通過(guò)解方程組可求出點(diǎn)P的坐標(biāo).綜上,此問(wèn)得解;
②利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)B,M的坐標(biāo),結(jié)合點(diǎn)C的坐標(biāo)可得出點(diǎn)B′的坐標(biāo),根據(jù)點(diǎn)M,B,B′的坐標(biāo),利用待定系數(shù)法可分別求出直線BM,B′M和BB′的解析式,利用平行線的性質(zhì)可求出直線l的解析式.
解:(1)當(dāng)時(shí),,
點(diǎn)C的坐標(biāo)為;
當(dāng)時(shí),,
解得:,
點(diǎn)A的坐標(biāo)為.
將,代入,得:
,解得:,
拋物線的解析式為.
(2)①軸,
,
分兩種情況考慮,如圖1所示.
(i)當(dāng)時(shí),軸,
點(diǎn)P的縱坐標(biāo)為﹣2.
當(dāng)時(shí),,
解得:,,
點(diǎn)P的坐標(biāo)為;
(ii)當(dāng)時(shí),設(shè)PC與x軸交于點(diǎn)D.
,,
.
又,
,
,即,
,
點(diǎn)D的坐標(biāo)為.
設(shè)直線PC的解析式為,
將,代入,得:
,解得:,
直線PC的解析式為.
聯(lián)立直線PC和拋物線的解析式成方程組,得:,
解得:,,
點(diǎn)P的坐標(biāo)為.
綜上所述:當(dāng)是直角三角形時(shí),點(diǎn)P的坐標(biāo)為或.
②當(dāng)y=0時(shí),,
解得:x1=-4,x2=2,
∴點(diǎn)B的坐標(biāo)為(2,0).
∵點(diǎn)C的坐標(biāo)為(0,-2),點(diǎn)B,B′關(guān)于點(diǎn)C對(duì)稱,
∴點(diǎn)B′的坐標(biāo)為(-2,-4).
∵點(diǎn)P的橫坐標(biāo)為m(m>0且m≠2),
∴點(diǎn)M的坐標(biāo)為,
利用待定系數(shù)法可求出:直線BM的解析式為,直線B′M的解析式為,直線BB′的解析式為y=x-2.
分三種情況考慮,如圖2所示:
當(dāng)直線l∥BM且過(guò)點(diǎn)C時(shí),直線l的解析式為,
當(dāng)直線l∥B′M且過(guò)點(diǎn)C時(shí),直線l的解析式為,
當(dāng)直線l∥BB′且過(guò)線段CM的中點(diǎn)時(shí),直線l的解析式為,
綜上所述:直線l的解析式為,或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整,并解決相關(guān)問(wèn)題:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值為_(kāi)_______________;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫(huà)出函數(shù)的大致圖象;
(4)結(jié)合函數(shù)圖象,請(qǐng)寫(xiě)出函數(shù)的一條性質(zhì):______________________.
(5)解決問(wèn)題:如果函數(shù)與直線y=a的交點(diǎn)有2個(gè),那么a的取值范圍是______________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=4,則△CEF的周長(zhǎng)為( )
A.11.5B.10C.9.5D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=8,P為線段AB上一個(gè)動(dòng)點(diǎn),分別以AP,PB為邊在AB的同側(cè)作菱形APCD和PBFE,點(diǎn)P,C,E在一條直線上,∠DAP=60°,M,N分別是對(duì)角線AC,BE的中點(diǎn),當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)M,N之間的距離最短為( )
A. B. C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形的一條邊,將矩形折疊,使得頂點(diǎn)落在邊上的點(diǎn)處. 如圖,已知折痕與邊交于點(diǎn),連結(jié).
(1)求證:;
(2)若,求邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李駕駛小汽車勻速地從A地行駛到B地,行駛里程為360千米,設(shè)小汽車的行駛時(shí)間為t(單位:小時(shí)),行駛速度為v(單位:千米/小時(shí)),且全程速度限定為不超過(guò)120千米/小時(shí).
(1)求v關(guān)于t的函數(shù)表達(dá)式(不用寫(xiě)取值范圍);
(2)小李上午8點(diǎn)駕駛小汽車從A地出發(fā).
①小李需在當(dāng)天12點(diǎn)至13點(diǎn)間到達(dá)B地,求小汽車行駛速度v的范圍.
②小李能否在當(dāng)天11點(diǎn)30分前到達(dá)B地?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)(﹣1,0),(3,0),(1,﹣5)三點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)求該圖象的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2,為什么?
(3)怎樣圍才能使圍出的矩形場(chǎng)地面積最大?最大面積為多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com