(2002•麗水)用換元法解方程+x2+2x-2=0時(shí),若設(shè)=y,則原方程可化為整式方程是   
【答案】分析:此方程可用換元法解方程,設(shè)=y.則x2+2x=y2,代入即可.
解答:解:設(shè)=y,則方程為y2+y-2=0.
故本題答案為:y2+y-2=0.
點(diǎn)評(píng):在解無(wú)理方程時(shí)最常用的方法是換元法,一般方法是通過(guò)觀察確定用來(lái)?yè)Q元的式子,如本題中設(shè)=y,需要注意的是用來(lái)?yè)Q元的式子為設(shè),則y2+y-2=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過(guò)點(diǎn)P(5,3),且分別與已知直線y2=3x交于點(diǎn)A、與x軸交于點(diǎn)B.設(shè)點(diǎn)A的橫坐標(biāo)為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點(diǎn)A,使得△AOB面積最?若存在,請(qǐng)求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過(guò)點(diǎn)P(5,3),且分別與已知直線y2=3x交于點(diǎn)A、與x軸交于點(diǎn)B.設(shè)點(diǎn)A的橫坐標(biāo)為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點(diǎn)A,使得△AOB面積最?若存在,請(qǐng)求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:填空題

(2002•麗水)用換元法解方程+x2+2x-2=0時(shí),若設(shè)=y,則原方程可化為整式方程是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•麗水)為了測(cè)量校園內(nèi)一棵不可攀的樹(shù)的高度,學(xué)校數(shù)學(xué)應(yīng)用實(shí)踐小組做了如下的探索:
實(shí)踐一:根據(jù)《自然科學(xué)》中的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如右示意圖的測(cè)量方案:把鏡子放在離樹(shù)(AB)8.7米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這是恰好在鏡子里看到樹(shù)梢頂點(diǎn)A,再用皮尺量得DE=2.7米,觀察者目高CD=1.6米,請(qǐng)你計(jì)算樹(shù)(AB)的高度.(精確到0.1米)
實(shí)踐二:提供選用的測(cè)量工具有:①皮尺一根;②教學(xué)用三角板一副;③長(zhǎng)為2.5米的標(biāo)桿一根;④高度為1.5米的測(cè)角儀(能測(cè)量仰角、俯角的儀器)一架.請(qǐng)根據(jù)你所設(shè)計(jì)的測(cè)量方案,回答下列問(wèn)題:
(1)在你設(shè)計(jì)的方案中,選用的測(cè)量工具是(用工具的序號(hào)填寫)______;
(2)在圖中畫出你的測(cè)量方案示意圖;
(3)你需要測(cè)得示意圖中的哪些數(shù)據(jù),并分別用a、b、c、α等表示測(cè)得的數(shù)據(jù):______;
(4)寫出求樹(shù)高的算式:AB=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案