【題目】如圖,△ABC中,∠C=90°,AC=BC,D、E分別在AC、BC上,若∠DBC=2∠BAE,AB=4,CD=,則CE的長為_____.
【答案】2
【解析】
如圖,延長BC至F,使CF=CD=,連接AF,由等腰直角三角形的性質可得AC=BC=4,∠ABC=∠BAC=45°,由勾股定理可求AF=,由“SAS”可證△ACF≌△BCD,可得∠CAF=∠CBD=2α,可求∠EAF=45°﹣α+2α=45°+α=∠AEF,可得AF=EF,即可求解.
解:如圖,延長BC至F,使CF=CD=,連接AF,
∵∠C=90°,AC=BC,AB=4,
∴AC=BC=4,∠ABC=∠BAC=45°,
∴AF=,
設∠BAE=α,則∠DBC=2α,
∴∠AEF=∠ABC+∠BAE=45°+α,∠EAC=45°﹣α
∵BC=AC,∠BCD=∠ACF=90°,CD=CF,
∴△ACF≌△BCD(SAS)
∴∠CAF=∠CBD=2α,
∴∠EAF=45°﹣α+2α=45°+α=∠AEF,
∴AF=EF=,
∴EC=EF﹣CF=,
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】已知點是等腰直角三角形斜邊上的中點,,是上一點,連結.
(1)如圖1,若點在線段上,過點作,垂足為,交于點,求證:;
(2)如圖2,若點在延長線上,,垂足為,交的延長線于點,其它條件不變,則結論“”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,合肥市某中學利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網(wǎng)絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡文明部分對應的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)解方程:;
(2)如圖,四邊形ABCD的對角線AC、BD交于點O,已知O是AC的中點,AE=CF,DE∥BE,求證:△BOE≌△DOF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“垃圾分類”,環(huán)保部門要求垃圾要按A,B,C,D四類分別裝袋、投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料、廢紙等可回收物,D類指出其他垃圾,小明、小亮各投放了一袋垃圾.
(1)直接寫出小明投放的垃圾恰好是A類的概率;
(2)求小亮投放的垃圾與小明投放的垃圾是同一類的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2x與x軸相交于點B,其對稱軸為x=3.
(1)求直線AB的解析式;
(2)過點O作直線l,使l∥AB,點P是l上一動點,設以點A、B、O、P為頂點的四邊形面積為S,點P的橫坐標為t,當0<S≤18時,求t的取值范圍;
(3)在(2)的條件下,當t取最大值時,拋物線上是否存在點Q,使△OPQ為直角三角形且OP為直角邊,若存在,求出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一天早上小華步行上學,他離開家后不遠便發(fā)現(xiàn)數(shù)學書忘在了家里,于是以相同的速度回家去拿,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開.為了不遲到,小華跑步到了學校,則小華離學校的距離y與時間t之間的函數(shù)關系的大致圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A.三角形的三條高線相交于三角形內(nèi)一點
B.等腰三角形的中線與高線重合
C.三邊長為的三角形為直角三角形
D.到線段兩端距離相等的點在這條線段的垂直平分線上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com