【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

【答案】
(1)FG=CE;FG∥CE
(2)

證明:過點G作GH⊥CB的延長線于點H,

∵EG⊥DE,

∴∠GEH+∠DEC=90°,

∵∠GEH+∠HGE=90°,

∴∠DEC=∠HGE,

在△HGE與△CED中,

,

∴△HGE≌△CED(AAS),

∴GH=CE,HE=CD,

∵CE=BF,

∴GH=BF,

∵GH∥BF,

∴四邊形GHBF是矩形,

∴GF=BH,F(xiàn)G∥CH

∴FG∥CE

∵四邊形ABCD是正方形,

∴CD=BC,

∴HE=BC

∴HE+EB=BC+EB

∴BH=EC

∴FG=EC


(3)

證明:

∵四邊形ABCD是正方形,

∴BC=CD,∠FBC=∠ECD=90°,

在△CBF與△DCE中,

,

∴△CBF≌△DCE(SAS),

∴∠BCF=∠CDE,CF=DE,

∵EG=DE,

∴CF=EG,

∵DE⊥EG

∴∠DEC+∠CEG=90°

∵∠CDE+∠DEC=90°

∴∠CDE=∠CEG,

∴∠BCF=∠CEG,

∴CF∥EG,

∴四邊形CEGF平行四邊形,

∴FG∥CE,F(xiàn)G=CE.


【解析】解:(1)FG=CE,F(xiàn)G∥CE;
(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,F(xiàn)G∥CE;(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,F(xiàn)G∥CE;(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.本題三角形與四邊形綜合問題,涉及全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì).解題的關(guān)鍵是利用全等三角形的對應(yīng)邊相等進行線段的等量代換,從而求證出平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=C=90°,AB=AD=9,AEBCE,AE=8,則CD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD的外側(cè),作兩個等邊三角形ADE和DCF,連接AF,BE

(1)請判斷:AF與BE的數(shù)量關(guān)系是 , 位置關(guān)系是 .
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予說明
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F(xiàn),且∠MAN始終保持45°不變.

(1)求證: =
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)某校組織學(xué)生參加周末郊游”.甲旅行社說:只要一名學(xué)生買全票,則其余學(xué)生可享受半價優(yōu)惠.”乙旅行社說:全體學(xué)生都可按6折優(yōu)惠”.已知全票價為240.

(1)設(shè)學(xué)生人數(shù)為x,甲旅行社收費為y甲(元),乙旅行社收費為y乙(元),用含x的式子表示出y甲與y乙;

(2)就學(xué)生人數(shù)x討論哪一家旅行社更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點E,AF交CD于點F,連接EF,過點A作AH⊥EF,垂足為H.

(1)如圖2,將△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABG.
①求證:△AGE≌△AFE;
②若BE=2,DF=3,求AH的長.
(2)如圖3,連接BD交AE于點M,交AF于點N.請?zhí)骄坎⒉孪耄壕段BM,MN,ND之間有什么數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示.AB,C,D是四個村莊,B,DC在一條東西走向公路的沿線上,BD=1km,DC=1km,村莊ACAD間也有公路相連,且公路AD是南北走向,AC=3km,只有AB之間由于間隔了一個小湖,所以無直接相連的公路.現(xiàn)決定在湖面上造一座斜拉橋,測得AE=1.2km,BF=0.7km.試求建造的斜拉橋長至少有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】杭州國際動漫節(jié)開幕前,某動漫公司預(yù)測某種動漫玩具能夠暢銷,就用32000元購進了一批這種玩具,上市后很快脫銷,動漫公司又用68000元購進第二批這種玩具,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.
(1)該動漫公司兩次共購進這種玩具多少套?
(2)如果這兩批玩具每套的售價相同,且全部售完后總利潤率不低于20%,那么每套售價至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案