【題目】某地下車庫出口處安裝了“兩段式欄桿”,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為(欄桿寬度忽略不計(jì).參考數(shù)據(jù):≈1.4)( )
A.
B.
C.
D.
【答案】B
【解析】解:如圖,過點(diǎn)A作BC的平行線AG,過點(diǎn)E作EH⊥AG于H,
則∠EHG=∠HEF=90°,
∵∠AEF=135°,
∴∠AEH=∠AEF﹣∠HEF=45°,
∠EAH=45°,
在△EAH中,∠EHA=90°,∠EAH=45°,AE=1.3米,
∴EH=AEsin∠EAH≈1.3×0.7=0.91(米),
∵AB=1.3米,
∴AB+EH≈1.3+0.91=1.92≈2.2米.
故選B.
過點(diǎn)A作BC的平行線AG,過點(diǎn)E作EH⊥AG于H,則∠BAG=90°,∠EHA=90°.先求出∠AEH=45°,則∠EAH=45°,然后在△EAH中,利用正弦函數(shù)的定義得出EH=AEsin∠EAH,則欄桿EF段距離地面的高度為:AB+EH,代入數(shù)值計(jì)算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為直線AB上一點(diǎn),∠COE是直角,OF平分∠AOE.
(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=n°,則∠BOE=________;∠BOE與∠COF的數(shù)量關(guān)系為________________.
(2)當(dāng)射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)說明理由.
(3)在圖③中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請(qǐng)求出∠BOD的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李按市場(chǎng)價(jià)格30元/千克收購了一批海鮮1000千克存放在冷庫里,據(jù)預(yù)測(cè),海鮮的市場(chǎng)價(jià)格將每天每千克上漲1元.冷凍存放這批海鮮每天需要支出各種費(fèi)用合計(jì)310元,而且這些海鮮在冷庫中最多存放160天,同時(shí)平均每天有3千克的海鮮變質(zhì).
(1)設(shè)x天后每千克該海鮮的市場(chǎng)價(jià)格為y元,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若存放x天后,將這批海鮮一次性出售.設(shè)這批海鮮的銷售總額為P元,試寫出P與x之間的函數(shù)關(guān)系式;
(3)小李將這批海鮮存放多少天后出售可獲得最大利潤,最大利潤是多少元?(利潤W=銷售總額﹣收購成本﹣各種費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c滿足
(1)求a,b,c的值;
(2)試問以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長;若不能構(gòu)成三角形,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾(gè)領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢(mèng),現(xiàn)有某教學(xué)網(wǎng)站策劃了A、B兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方案:
A方案:月租7元,可上網(wǎng)25小時(shí),若超時(shí),超出部分按每分鐘0.01元收費(fèi);
B方案:月租10元,可上網(wǎng)50小時(shí),若超時(shí),超出部分按每分鐘0.01元收費(fèi);
設(shè)每月上網(wǎng)學(xué)習(xí)時(shí)間為小時(shí).
(1)當(dāng)>50時(shí),用含有x的代數(shù)式分別表示A、B兩種上網(wǎng)的費(fèi)用;
(2)當(dāng)x=100時(shí),分別求出兩種上網(wǎng)學(xué)習(xí)的費(fèi)用.
(3)若上網(wǎng)40小時(shí),選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.
已知線段a,c如圖.
小蕓的作法如下:
①取AB=c,作AB的垂直平分線交AB于點(diǎn)O;
②以點(diǎn)O為圓心,OB長為半徑畫圓;
③以點(diǎn)B為圓心,a長為半徑畫弧,與⊙O交于點(diǎn)C;
④連接BC,AC.
則Rt△ABC即為所求.
老師說:“小蕓的作法正確.”
請(qǐng)回答:小蕓的作法中判斷∠ACB是直角的依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018“體彩杯”重慶開州漢豐湖半程馬拉松賽開跑前一周,某校七年級(jí)數(shù)學(xué)研究學(xué)習(xí)小組在某十字路口隨機(jī)調(diào)查部分市民對(duì)“半馬拉松賽”的了解情況,統(tǒng)計(jì)結(jié)果后繪制了如圖的兩副不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
A | 50<n≤60 |
B | 60<n≤70 |
C | 70<n≤80 |
D | 80<n≤90 |
E | 90<n≤100 |
(1)本次調(diào)查的總?cè)藬?shù)為 人,在扇形統(tǒng)計(jì)圖中“C”所在扇形的圓心角的度數(shù)為 度;
(2)補(bǔ)全頻數(shù)分布圖;
(3)若在這一周里,該路口共有7000人通過,請(qǐng)估計(jì)得分超過80的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置①可得到點(diǎn)P1,此時(shí)AP1=;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②可得到點(diǎn)P2,此時(shí)AP2=+1;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③可得到點(diǎn)P3時(shí),AP3=+2…按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)為止,則=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com