如圖在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,動點E以2cm/秒的速度從點A向點C運動(與點A,C不重合),過點E作EF∥AB交BC于F點.精英家教網(wǎng)
(1)求AB的長;
(2)設(shè)點E出發(fā)x秒后,線段EF的長為ycm.
①求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍; 
②試問在AB上是否存在P,使得△EFP為等腰直角三角形?若存在,請說出共有幾個,并求出相應(yīng)的x的值;若不存在,請簡要說明理由.
分析:(1)由在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,根據(jù)勾股定理即可求得AB的長;
(2)①由EF∥AB,可得△CEF∽△CAB,又由點E出發(fā)x秒后,線段EF的長為ycm,求得AE與EC的長,然后根據(jù)相似三角形的對應(yīng)邊成比例,即可求得y與x的函數(shù)關(guān)系式;
②分別從當∠PEF=90°,∠PFE=90°與∠EPF=90°去分析求解,利用三角函數(shù)的知識即可求得相應(yīng)的x的值.
解答:解:(1)∵Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,
∴AB=
AC2+BC2
=
82+62
=10(cm);
∴AB的長為10cm;

(2)①∵EF∥AB,
∴△CEF∽△CAB,
EF
AB
=
CE
CA
,
∵點E出發(fā)x秒后,AE=2xcm,CE=8-2x(cm),
又∵線段EF的長為ycm,
y
10
=
8-2x
8
,
∴y=-
5
2
x+10;
∴y與x的函數(shù)關(guān)系式為y=-
5
2
x+10(0<x<4);精英家教網(wǎng)

②存在.
過點E作EP⊥AB于P,當EP=EF時,
△PEF是等腰直角三角形,
∵sin∠A=
EP
AE
=
BC
AB

即:
EP
2x
=
6
10
,
∴EP=
6
5
x,
6
5
x=-
5
2
x+10,
解得:x=
100
37
;
同理:當FP⊥AB于P,F(xiàn)P=EF時,△PEF是等腰直角三角形,此時,x=
100
37
;
當EF的中垂線PK交AB于P,交EF于K,且EF=2PK時,△PEF是等腰直角三角形,
同理可求得:KP=
6
5
x,
∴2×
6
5
x=-
5
2
x+10,
解得:x=
100
49

∴存在這樣的點共三個.
點評:此題考查了勾股定理,相似三角形的判定與性質(zhì)以及等腰直角三角形性質(zhì)等知識.此題綜合性很強,難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想,方程思想與分類討論思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在Rt△ABC中,∠BAC=90°,AB=5,AC=4,AD、AE分別是△ABC的中線和角平分線,則△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在Rt△ABC中,∠ACB=90°,sinA=
23
,點D、E分別在AB、AC邊上,DE⊥AC,DE=2,DB=9,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在Rt△ABC中,∠C=90°,AC=5,AB=13,則tanB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在Rt△ABC中,AD平分∠CAB,CD=8cm,那么點D到AB的距離是
8
8
 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖在Rt△ABC中,CD是AB邊上的高,若AD=8,BD=2,則CD=
4
4

(2)在△ABC中,AB=15,AC=13,BC邊上的高AD=12,試求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案