【題目】如圖,在RtABC中,∠C90°,AC8cm,BC6cm,動(dòng)點(diǎn)M以每秒1cm的速度從點(diǎn)B向點(diǎn)C移動(dòng);同時(shí)動(dòng)點(diǎn)N3cm的速度從點(diǎn)CA移動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),兩點(diǎn)都停止移動(dòng),連接MN,設(shè)移動(dòng)時(shí)間為t秒.

1)當(dāng)t為何值時(shí),SMNCS四邊形ABMN?

2)當(dāng)t為何值時(shí),MNCABC相似?

【答案】1t2;(2t

【解析】

1)由題意可知:CM6t,CN3t,因?yàn)?/span>SMNCS四邊形ABMN,所以SMNCABC的面積一半,由此列出方程解答即可;

2)分兩種情況:MCN∽△ACBMCN∽△BCA,得出對(duì)應(yīng)線段的比計(jì)算得出答案即可.

解:(1)∵AC8cm,BC6cm,

SABC24cm2

CM6t,CN3t,SMNCS四邊形ABMN,

×3t6t)=12

解得:t12,t24

∵當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),兩點(diǎn)都停止移動(dòng),

0t,

∴當(dāng)t2時(shí),SMNCS四邊形ABMN

2)①當(dāng)MCN∽△ACB時(shí),

,

解得:t;

②當(dāng)MCN∽△BCA時(shí),

,

,

解得:t,

答:當(dāng)t時(shí),MNCABC相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,對(duì)角線、交于,垂足為,那么的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的動(dòng)點(diǎn)和圖形,給出如下定義:如果為圖形上一個(gè)動(dòng)點(diǎn),兩點(diǎn)間距離的最大值為,兩點(diǎn)間距離的最小值為,我們把的值叫點(diǎn)和圖形間的和距離,記作,圖形.

1)如圖,正方形的中心為點(diǎn),.

①點(diǎn)到線段和距離,線段=______;

②設(shè)該正方形與軸交于點(diǎn),點(diǎn)在線段上,,正方形=7,求點(diǎn)的坐標(biāo).

2)如圖2,在(1)的條件下,過(guò),兩點(diǎn)作射線,連接,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),如果,線段,直接寫(xiě)出點(diǎn)橫坐標(biāo)取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若PQ兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn)P與點(diǎn)Q是一個(gè)和諧點(diǎn)對(duì),表示為[P,Q],比如[P1,2),Q(﹣1,﹣2]是一個(gè)和諧點(diǎn)對(duì)

1)寫(xiě)出反比例函數(shù)y圖象上的一個(gè)和諧點(diǎn)對(duì)

2)已知二次函數(shù)yx2+mx+n,

①若此函數(shù)圖象上存在一個(gè)和諧點(diǎn)對(duì)[A,B],其中點(diǎn)A的坐標(biāo)為(24),求mn的值;

②在①的條件下,在y軸上取一點(diǎn)M0b),當(dāng)∠AMB為銳角時(shí),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將ADE沿AE折疊后得到AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長(zhǎng)交邊BC于點(diǎn)G.若,則的值是 ___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過(guò)點(diǎn)DDFAC,垂足為點(diǎn)F

1)求證:DF為⊙O的切線;

2)求證:FCE的中點(diǎn);

3)若⊙O的半徑為3,∠CDF22.5°,求陰影部分的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是⊙O的內(nèi)接三角形,∠BAC的平分線交⊙O于點(diǎn)D

I)如圖①,若BC是⊙O的直徑,BC4,求BD的長(zhǎng);

)如圖②,若∠ABC的平分線交AD于點(diǎn)E,求證:DEDB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)州二中八十周年校慶來(lái)臨之際,學(xué)校本著簡(jiǎn)樸,節(jié)儉,實(shí)效,特色的原則將 2019 10 25 日至 11 25 日定為校友回訪月,學(xué)?倓(wù)處購(gòu)買(mǎi)了紅,黃,藍(lán)三種花卉裝扮 AB,C,D 四種造型,其中一個(gè) A 造型需要 15 盆紅花,10 盆黃花,10 盆藍(lán)花;一個(gè) B 造型需要 5 盆紅花,7 盆黃花,6 盆藍(lán)花;一個(gè) C 造型需要 7 盆紅花,8 盆黃花,9 盆藍(lán) 花;一個(gè) D 造型需要 7 盆紅花,10 盆黃花,10 盆藍(lán)花,若一個(gè) A 造型售價(jià) 1800 元,利潤(rùn) 率為 20%,一個(gè) B 和一個(gè) C 造型一共成本和為 1935 元,且一盆紅花的利潤(rùn)率為 25%,則一個(gè) D 造型的售價(jià)為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱(chēng)為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱(chēng)為圖形G的“特征值”

(1)①點(diǎn)A(1,3) 的“坐標(biāo)差”為 。

②拋物線y=x2+3x+3的“特征值”為

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等。

①直接寫(xiě)出m= (用含c的式子表示)

②求此二次函數(shù)的表達(dá)式。

(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點(diǎn)D、E請(qǐng)直接寫(xiě)出⊙M的“特征值”為 。

查看答案和解析>>

同步練習(xí)冊(cè)答案