如圖,在Rt△ABC中,∠ABC=90°,∠A<∠C,BD是斜邊AC的中線,將△ABD沿直線BD折疊,點A落在點E處,如果BE恰好與AC垂直,那么sinA=______.
∵在直角△ABC中,BD是斜邊AC的中線,
∴CD=AD=DB,(直角三角形的斜邊中線等于斜邊一半),
∴∠A=∠ABD,
由折疊的性質可得:∠A=∠E,∠ABD=∠DBE,AD=DE,
∴DE=DB,∠A=∠ABD=∠DBE=∠E,
∵AC⊥BE,
∴∠BDC=∠EDC,∠AOB=∠AOE=90°,
∵∠C+∠A=90°,∠C+∠OBC=90°,
∴∠A=∠OBC,
∴∠A=∠ABD=∠DBE=∠OBC,
∴∠A=
1
3
∠ABC=30°,
∴sinA=
1
2
,
故答案為:
1
2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,矩形AOBC在直角坐標系中,O為原點,A在x軸上,B在y軸上,直線AB的函數(shù)關系式為y=-
4
3
x+8
,M是OB上的一點,若將梯形AMBC沿AM折疊,點B恰好落在x軸上的點B′處,C的對應點為C′.
(1)求出B′點和M點的坐標;
(2)求直線AC′的函數(shù)關系式;
(3)設一動點P從A點出發(fā),以每秒1個單位速度沿射線AB方向運動,過P作PQ⊥AB,交射線AM于Q;
①求運動t秒時,Q點的坐標;(用含t的代數(shù)式表示)
②以Q為圓心,以PQ的長為半徑作圓,當t為何值時,⊙Q與y軸相切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1,等邊△ABC中,AB=2,點E是AB的中點,AD是高,P為AD上一點,則BP+PE的最小值等于______.
(2)如圖2,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則AF:CF=( 。
A.2:1B.3:2C.5:3D.7:5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙P的圓心為P(-3,2),半徑為3,直線MN過點M(5,0)且平行于y軸,點N在點M的上方.
(1)在圖中作出⊙P關于y軸對稱的⊙P′.根據(jù)作圖直接寫出⊙P′與直線MN的位置關系.
(2)若點N在(1)中的⊙P′上,求PN的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點P是邊長為1的菱形ABCD對角線AC上一個動點,點M,N分別為AB,BC邊上的中點,則MP+NP的最小值是( 。
A.2B.1C.
2
D.
1
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將邊長為8cm的正方形紙片ABCD折疊,使點D落在BC邊中點E處,點A落在點F處,折痕為MN,則線段CN的長度為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,長方形ABCD的邊AB可表示為(0,y)(-1≤y≤2),邊BC可表示為(x,2)(0≤x≤4).
(1)在直角坐標系中畫出長方形的位置,并寫出A,B,C,D的坐標.
(2)將長方形ABCD作關于y軸的軸對稱圖形A′B′C′D′,求C′,D′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,把平行四邊形ABCD翻折,使B點與D點重合,EF為折痕,連接BE,DF.請你猜一猜四邊形BFDE是什么特殊四邊形?并證明你的猜想.

查看答案和解析>>

同步練習冊答案