8.若$\sqrt{7}$的整數(shù)部分是a,小數(shù)部分是b,計(jì)算$\sqrt{7}$a+b的值為3$\sqrt{7}$-2.

分析 先利用逼近法求出$\sqrt{7}$在哪兩個(gè)連續(xù)的整數(shù)之間,得出整數(shù)部分a的值,再求出小數(shù)部分b的值,然后代入$\sqrt{7}$a+b,計(jì)算即可.

解答 解:∵4<7<9,
∴2<$\sqrt{7}$<3,
∴a=2,b=$\sqrt{7}$-2,
∴$\sqrt{7}$a+b=$\sqrt{7}$×2+$\sqrt{7}$-2=3$\sqrt{7}$-2.
故答案為3$\sqrt{7}$-2.

點(diǎn)評(píng) 本題考查了估算無(wú)理數(shù)大小的知識(shí),注意運(yùn)用“夾近法”得出a,b的值是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.新定義:我們把兩條中線互相垂直的三角形稱為“中垂三角形”.如圖所示,△ABC中,AF、BE是中線,且AF⊥BE,垂足為P,像△ABC這樣的三角形稱為“中垂三角形”,如果∠ABE=30°,AB=4,那么此時(shí)AC的長(zhǎng)為2$\sqrt{7}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.
(1)如圖1,若∠ABC=60°、∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.
①求證:CE=AG;
②若BF=2AF,連接CF,求∠CFE的度數(shù);
(2)如圖2,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,直接寫出$\frac{{S}_{△ABF}}{{S}_{△ACF}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.
探究一:已知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.
因?yàn)檎叫蜛BCD的面積為1,則正方形EFGH的面積為2,
所以EF=FG=GH=HE=$\sqrt{2}$,設(shè)EB=x,則BF=$\sqrt{2}$-x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=$\sqrt{2}$-x
在Rt△AEB中,由勾股定理,得
x2+($\sqrt{2}$-x)2=12
解得,x1=x2=$\frac{\sqrt{2}}{2}$
∴BE=BF,即點(diǎn)B是EF的中點(diǎn).
同理,點(diǎn)C,D,A分別是FG,GH,HE的中點(diǎn).
所以,存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍
探究二:已知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)
探究三:已知邊長(zhǎng)為1的正方形ABCD,不存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
探究四:已知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.如圖,將長(zhǎng)方形紙片ABCD沿直線BD翻折180°,使點(diǎn)A落在點(diǎn)A′,若∠1=20°,則∠2的度數(shù)為40°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.已知線段AB=3厘米,延長(zhǎng)BA到C使BC=5厘米,則AC的長(zhǎng)是( 。
A.2厘米B.8厘米C.3厘米D.11厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.隨著服裝市場(chǎng)競(jìng)爭(zhēng)日益激烈,某品牌服裝專賣店一款服裝按原售價(jià)降價(jià)20%,現(xiàn)售價(jià)為a元,則原售價(jià)為( 。
A.(a-20%)元B.(a+20%)元C.$\frac{5}{4}$a元D.$\frac{4}{5}$a元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.已知$\frac{a}{3}=\frac{4}=\frac{c}{5}$≠0,則$\frac{b+c}{a}$=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)y=$\frac{3}{4}$x-1,如果函數(shù)值y>2,那么相應(yīng)的自變量x的取值范圍是x>4.

查看答案和解析>>

同步練習(xí)冊(cè)答案