8.現(xiàn)有某個(gè)數(shù)學(xué)運(yùn)算符號(hào)“△”能使下列算式成立:$\frac{1}{2}$△$\frac{2}{3}$=$\frac{3}{6}$,$\frac{4}{5}$△$\frac{7}{9}$=$\frac{11}{45}$,$\frac{5}{6}$△$\frac{1}{7}$=$\frac{6}{42}$,則$\frac{3}{11}$△$\frac{4}{5}$=$\frac{7}{55}$.

分析 根據(jù)$\frac{1}{2}$△$\frac{2}{3}$=$\frac{3}{6}$,$\frac{4}{5}$△$\frac{7}{9}$=$\frac{11}{45}$,$\frac{5}{6}$△$\frac{1}{7}$=$\frac{6}{42}$,可得每個(gè)算式的結(jié)果中分母等于△兩邊的兩個(gè)分母的積,分子等于△兩邊的兩個(gè)分子的和,據(jù)此求出$\frac{3}{11}$△$\frac{4}{5}$的值是多少即可.

解答 解:∵$\frac{1}{2}$△$\frac{2}{3}$=$\frac{3}{6}$,$\frac{4}{5}$△$\frac{7}{9}$=$\frac{11}{45}$,$\frac{5}{6}$△$\frac{1}{7}$=$\frac{6}{42}$,
∴$\frac{3}{11}$△$\frac{4}{5}$=$\frac{7}{55}$.
故答案為:$\frac{7}{55}$.

點(diǎn)評(píng) 此題主要考查了有理數(shù)的混合運(yùn)算,要熟練掌握,注意明確有理數(shù)混合運(yùn)算順序:先算乘方,再算乘除,最后算加減;同級(jí)運(yùn)算,應(yīng)按從左到右的順序進(jìn)行計(jì)算;如果有括號(hào),要先做括號(hào)內(nèi)的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.下列實(shí)數(shù)中,不屬于無理數(shù)的是( 。
A.$\frac{22}{7}$B.$\sqrt{3}$C.100πD.$\sqrt{\frac{1}{2}}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.先化簡(jiǎn),再求值:4(y+1)+4(1-x)-4(x+y),其中x=2,y=$\frac{14}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.杭紹臺(tái)高速公路已經(jīng)開工建設(shè),建成通車后,從天臺(tái)到杭州有兩條高度公路可選擇,一是選擇現(xiàn)在的上三高速,二是選擇杭紹臺(tái)高速.到時(shí)選擇杭紹臺(tái)高速比上三高速路程縮短32 km,平均速度快5km/h,行駛時(shí)間為1.6小時(shí);已知現(xiàn)在選擇上三高速?gòu)奶炫_(tái)到杭州需2小時(shí),求杭紹臺(tái)高速?gòu)奶炫_(tái)到杭州的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示的操作步驟,若輸入x的值為5,則輸出的值為(  )
A.94B.95C.96D.97

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四邊形ABCD中,∠BAD=∠BCD=90°,BC=12,CD=AC=16,M、N分別是對(duì)角線BD、AC的中點(diǎn).
(1)求證:MN⊥AC;
(2)求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.在《整式》這一章中,同學(xué)們學(xué)習(xí)了和單項(xiàng)式有關(guān)的數(shù)學(xué)概念及其結(jié)論:例如,如何計(jì)算單項(xiàng)式的次數(shù)、怎樣判斷單項(xiàng)式的系數(shù)、同類項(xiàng)等的相關(guān)內(nèi)容,請(qǐng)寫出一個(gè)與單項(xiàng)式-$\frac{2}{5}$x3y有關(guān)的數(shù)學(xué)結(jié)論單項(xiàng)式系數(shù)為$-\frac{2}{5}$,單項(xiàng)式次數(shù)為4,同類項(xiàng)為x3y(本題答案不唯一,滿足條件即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.試一試
(1)根據(jù)冪的意義,觀察分析,模仿填空.
①33×34=(3×3×3)×(3×3×3×3)=37
②43×44=(4×4×4)×(4×4×4×4)=4((7)
③a3×a4=a•a•a•a•a•a•a=a(  )
概括:am•an=$\underset{\underbrace{(a•a•a…a)}}{()個(gè)}$×$\underset{\underbrace{(a•a•a…a)}}{()個(gè)}$=$\underset{\underbrace{(a•a•a…a)}}{()個(gè)}$=a( 。
可得:am•an=a( 。m、n為正整數(shù)
就是說:
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
(2)應(yīng)用:
計(jì)算:①105×104
          ②a•a5•a7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.若點(diǎn)P(m,3)與點(diǎn)Q(1,n)關(guān)于y軸對(duì)稱,則m=-1;n=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案