【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點(diǎn)E,AB=9,cos∠BAC= ,tan∠DBC= .
求:
(1)邊CD的長;
(2)△BCE的面積.
【答案】
(1)解:∵∠ABC=∠BCD=90°,AB=9,cos∠BAC= ,tan∠DBC= ,
∴設(shè)CD=5a,則BC=12a,AB=9a,
∴9a=9,得a=1,
∴CD=5a=5,
即CD的長是5
(2)解:由(1)知,AB=9,BC=12,CD=5,
∵∠ABC=∠BCD=90°,
∴AB∥CD,
∴ ,
作EF∥AB交CB于點(diǎn)F,
則△CEF∽△CAB,
∴ ,
∴ ,
解得,EF= ,
∴△BCE的面積是: .
【解析】(1)根據(jù)題目中的數(shù)據(jù)和銳角三角函數(shù)可以求得CD的長;(2)根據(jù)題意可以求得BC和BC邊上的高,從而可以求得△BCE的面積.
【考點(diǎn)精析】本題主要考查了解直角三角形的相關(guān)知識點(diǎn),需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ACDB中,AB為直徑,AC:BC=1:2,點(diǎn)D為弧AB的中點(diǎn),BE⊥CD垂足為E.
(1)求∠BCE的度數(shù);
(2)求證:D為CE的中點(diǎn);
(3)連接OE交BC于點(diǎn)F,若AB= ,求OE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,過點(diǎn)O作兩條射線OM、ON,且∠AOM=∠CON=90°
(1)若OC平分∠AOM,求∠AOD的度數(shù).
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】基本圖形:在Rt△中,,為邊上一點(diǎn)(不與點(diǎn),重合),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到.
探索:(1)連接,如圖①,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;
(2)連接,如圖②,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;
聯(lián)想:(3)如圖③,在四邊形中,.若,,則的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙A和⊙B的半徑分別為5和1,AB=3,點(diǎn)O在直線AB上,⊙O與⊙A、⊙B都內(nèi)切,那么⊙O半徑是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝“六一”兒童節(jié),某市中小學(xué)統(tǒng)一組織文藝匯演,甲、乙兩所學(xué)校共92人(其中甲校的人數(shù)多于乙校的人數(shù),且甲校的人數(shù)不足90人)準(zhǔn)備統(tǒng)一購買服裝參加演出;下面是某服裝廠給出的演出服裝的價(jià)格表
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價(jià)格 | 60元 | 50元 | 40元 |
(1)如果兩所學(xué)校分別單獨(dú)購買服裝一共應(yīng)付5000元,甲、乙兩所學(xué)校各有多少學(xué)生準(zhǔn)備參加演出?
(2)如果甲校有10名同學(xué)抽調(diào)去參加書法繪畫比賽不能參加演出,請你為兩所學(xué)校設(shè)計(jì)一種最省錢的購買服裝方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BA的延長線上,BE=AF,CF∥AE,CF與邊AD相交于點(diǎn)G.
求證:
(1)FD=CG;
(2)CG2=FGFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)圖象交x軸于點(diǎn)(-2,0),與y軸的交點(diǎn)到原點(diǎn)的距離為5,則該一次函數(shù)解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是( )
A. 20 B. 25 C. 30 D. 32
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com