【題目】如圖,在正方形ABCD中,AB=6,點E在邊CD上,DE=DC,連接AE,將△ADE沿AE翻折,點D落在點F處,點O是對角線BD的中點,連接OF并延長OF交CD于點G,連接BF,BG,則△BFG的周長是 .
【答案】.
【解析】
試題分析:解;如圖延長EF交BC于M,連接AM,OM,作FN⊥CD于N,F(xiàn)R⊥BC于R,GH⊥OM于H交FR于T.
在RT△AMF和RT△AMB中,∵AM=AM,AF=AB,∴△AMF≌△AMB,∴BM=MF,設BM=MF=x,在RT△EMC中,∵,∴,∴x=3,∴BM=MC=3,∵OB=OD,∴OM=CD=3,∵FR∥EC,∴,∴,∴FR=,設CG=y,則FT=﹣y.OH=3﹣y,∵FT∥OH,∴,∴,∴y=3,∴CG=3,NG=CN﹣CG=,在RT△FNG中,F(xiàn)G===,在RT△BCG中,BG==,∵AB=AF,MB=MF,∴AM⊥BF,∵AMBF=2××AB×BM,∴BF=,∴△BFG的周長=++=.故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖梯形ABCD中,AD∥BC,∠ABC+∠C=90°,AB=6,CD=8,M,N,P分別為AD、BC、BD的中點,則MN的長為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,G,E分別是正方形ABCD的邊AB,BC的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結論:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH
其中,正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在求1+3+32+33+34+35+36+37+38的值時,張紅發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設:S=1+3+32+33+34+35+36+37+38①,
然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
所以S= .
得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條城際鐵路從A市到B市需要經(jīng)過C市,A市位于C市西南方向,與C市相距40在千米,B市恰好位于A市的正東方向和C市的南偏東60°方向處.因打造城市經(jīng)濟新格局需要,將從A市到B市之間鋪設一條筆直的鐵路,求新鋪設的鐵路AB的長度.(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com