【題目】下面是“作以已知線段為斜邊的等腰直角三角形”的尺規(guī)作圖過程.
已知:線段.
求作:以為斜邊的一個等腰直角三角形.
作法:如圖,
(1)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點;
(2)作直線,交于點;
(3)以為圓心,的長為半徑作圓,交直線于點;
(4)連接,.
則即為所求作的三角形.
請回答:在上面的作圖過程中,①是直角三角形的依據(jù)是________;②是等腰三角形的依據(jù)是__________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知過點B(1,0)的直線與直線:相交于點P(-1,a).且l1與y軸相交于C點,l2與x軸相交于A點.
(1)求直線的解析式;
(2)求四邊形的面積;
(3)若點Q是x軸上一動點,連接PQ、CQ,當△QPC周長最小時,求點Q坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=﹣x+b與x軸、y軸相交于A、B兩點,動點C(m,0)在線段OA上,將線段CB繞著點C順時針旋轉90°得到CD,此時點D恰好落在直線AB上,過點D作DE⊥x軸于點E.
(1)求m和b的數(shù)量關系;
(2)當m=1時,如圖2,將△BCD沿x軸正方向平移得△B′C′D′,當直線B′C′經(jīng)過點D時,求點B′的坐標及△BCD平移的距離;
(3)在(2)的條件下,直線AB上是否存在一點P,以P、C、D為頂點的三角形是等腰直角三角形?若存在,寫出滿足條件的P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知的三個頂點的坐標分別為、、
(1)畫出關于坐標原點O成中心對稱的;
(2)將繞坐標原點O順時針旋轉,畫出對應的;
(3)若以、、、為頂點的四邊形為平行四邊形,請直接寫出在第一象限中的點的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】簡單多面體是各個面都是多邊形組成的幾何體,十八世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)和棱數(shù)(E)之間存在一個有趣的關系式,稱為歐拉公式.如表是根據(jù)左邊的多面體模型列出的不完整的表:
多面體 | 頂點數(shù) | 面數(shù) | 棱數(shù) |
四面體 | 4 | 4 | 6 |
長方體 | 8 | 6 | |
正八面體 | 8 | 12 |
現(xiàn)在有一個多面體,它的每一個面都是三角形,它的面數(shù)(F)和棱數(shù)(E)的和為30,則這個多面體的頂點數(shù)V=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是甲、乙兩名射擊運動員的10次射擊測試成績的折線統(tǒng)計圖.
(1)根據(jù)折線圖把下列表格補充完整;
運動員 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 8.5 | 9 | |
乙 | 8.5 |
(2)根據(jù)上述圖表運用所學統(tǒng)計知識對甲、乙兩名運動員的射擊水平進行評價并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,表中給出的是某月的月歷,任意選取“”型框中的個數(shù)(如陰影部分所示).請你運用所學的數(shù)學知識來研究,則這個數(shù)的和不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)教育局為了解八年級學生的審題素質(zhì)測試情況,隨機抽調(diào)了全區(qū)八年級部分學生的身體素質(zhì)測試成績作為樣本,按(優(yōu)秀),(良好), (合格), (不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制了如圖兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調(diào)查了多少名學生?
(2)通過計算將條形圖補充完整,并求出統(tǒng)計圖中“”部分所對應的圓心角的度數(shù);
(3)若該地區(qū)八年級共3000名學生參加了審題素質(zhì)測試,請估計出測試成績在良好以上含良好的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com