【題目】如圖,在直角坐標(biāo)平面中,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(20,0),點(diǎn)B在第一象限內(nèi),BO=10,sin∠BOA= .
(1)在圖中,求作△ABO的外接圓;(尺規(guī)作圖,不寫作法但需保留作圖痕跡)
(2)求點(diǎn)B的坐標(biāo)與cos∠BAO的值;
(3)若A,O位置不變,將點(diǎn)B沿 軸正半軸方向平移使得△ABO為等腰三角形,請(qǐng)直接寫出平移距離.
【答案】
(1)
如圖,
⊙C即為所求作的圓
(2)
B(8,6)
cos =
(3)
點(diǎn)B沿 軸向右平移2個(gè)單位或 或 個(gè)單位
【解析】(1)如圖,分別作OB,OA的垂直平分線,得到它們的交點(diǎn),再畫圓,詳細(xì)方法:
畫OB的垂直平分線:分別以O(shè),B為圓心,以大于OB的長(zhǎng)度畫弧,在OB的兩側(cè)相交于兩點(diǎn),連接它們,即是OB的垂直平分線;
畫AB的垂直平分線:分別以A,B為圓心,以大于AB的長(zhǎng)度畫弧,在OB的兩側(cè)相交于兩點(diǎn),連接它們,即是AB的垂直平分線;
得到交點(diǎn)C,即是外接圓的圓心,以OC為半徑畫圓.
(2)如圖1,過(guò)點(diǎn)B作BDOA于D,則在RtOBD中,sin∠BOA= , BO=10,
則BD=OB×sin∠BOA=10×=6,
則OD=.
則B(8,6).
在RtABD中,因?yàn)锳(20,0),則OA=20,AD=OA-OD=20-8=12,AB= ,
則cos ∠ BAO=.
圖1
(3)以O(shè)A為底時(shí),如圖2,OB=AB,則B(10,6),向x軸正方向平移了10-8=2;
圖2
以O(shè)B為底邊時(shí),如圖3,AB=OA=20,則AD=,
則OD=OA-AD或OA+AD,即OD=或,
所以向x軸正半軸移動(dòng)了18<0,不符合,合去,或;
圖3
以AB為底時(shí),如圖4,OB=OA=20,則OD=,
所以向x軸正半軸移動(dòng)了.
綜上,答案為:點(diǎn)B沿 軸向右平移2個(gè)單位或或個(gè)單位
圖4
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識(shí),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角),以及對(duì)三角形的外接圓與外心的理解,了解過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,線段AC=6cm,線段BC=15cm,點(diǎn)M是AC的中點(diǎn),在CB上取一點(diǎn)N,使得CN:NB=1:2,求MN的長(zhǎng).
(2)如圖2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買足球和籃球共20個(gè),但要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)1550元,學(xué)校最多可以購(gòu)買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中畫出兩條相交直線y=x和y=kx+b,交點(diǎn)為(x0 , y0),在x軸上表示出不與x0重合的x1 , 先在直線y=kx+b上確定點(diǎn)(x1 , y1),再在直線y=x上確定縱坐標(biāo)為y1的點(diǎn)(x2 , y1),然后在x軸上確定對(duì)應(yīng)的數(shù)x2 , …,依次類推到(xn , yn-1),我們來(lái)研究隨著n的不斷增加,xn的變化情況.如圖1(注意:圖在下頁(yè)上),若k=2,b=—4,隨著n的不斷增加,xn逐漸(填“靠近”或“遠(yuǎn)離”)x0;如圖2,若k= ,b=2,隨著n的不斷增加,xn逐漸(填“靠近”或“遠(yuǎn)離”)x0;若隨著n的不斷增加,xn逐漸靠近x0 , 則k的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2018次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表記錄的是流花河今年某一周內(nèi)的水位變化情況,上周末(星期六)的水位已達(dá)到警戒水位米.(正號(hào)表示水位比前一天上升,負(fù)號(hào)表示水位比前一天下降)
星期 | 日 | 一 | 二 | 三 | 四 | 五 | 六 |
水位變化 |
本周哪一天河流的水位最高?哪一天河流的水位最低?它們位于警戒水位之上還是之下?
與上周末相比,本周末河流的水位是上升了還是下降了?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過(guò)點(diǎn)A的直線,BD⊥DE于D,CE⊥DE于點(diǎn)E;
(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:AB⊥AC;
(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.平面直角坐標(biāo)系的原點(diǎn)O在格點(diǎn)上, 軸、軸都在網(wǎng)格線上.線段AB的端點(diǎn)A、B在格點(diǎn)上.
(1)將線段AB繞點(diǎn)O逆時(shí)針90°得到線段A1B1,請(qǐng)?jiān)趫D中畫出線段A1B1;
(2)在(1)的條件下,線段A2B2與線段A1B1關(guān)于原點(diǎn)O成中心對(duì)稱,請(qǐng)?jiān)趫D中畫出線段A2B2;
(3)在(1)、(2)的條件下,點(diǎn)P是此平面直角坐標(biāo)系內(nèi)的一點(diǎn),當(dāng)以點(diǎn)A、B、B2、P為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知點(diǎn)C是線段AB上一點(diǎn),點(diǎn)M,N,P分別是線段AC,BC,AB的中點(diǎn).
(1)若AB=12 cm,則MN的長(zhǎng)度是______cm;
(2)若AC=3 cm,CP=1 cm,求線段PN的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com