【題目】如圖,在正方形ABCD中,點(diǎn)E是對角線AC上一點(diǎn),且CE=CD,過點(diǎn)E作EF⊥AC交AD于點(diǎn)F,連接BE.
(1)求證:DF=AE;
(2)當(dāng)AB=2時(shí),求BE2的值.

【答案】
(1)證明:如圖,連接CF,

在Rt△CDF和Rt△CEF中,

∴Rt△CDF≌Rt△CEF(HL),

∴DF=EF,

∵AC是正方形ABCD的對角線,

∴∠EAF=45°,

∴△AEF是等腰直角三角形,

∴AE=EF,

∴DF=AE


(2)解:∵AB=2,

∴AC= AB=2 ,

∵CE=CD,

∴AE=2 ﹣2,

過點(diǎn)E作EH⊥AB于H,

則△AEH是等腰直角三角形,

∴EH=AH= AE= ×(2 ﹣2)=2﹣ ,

∴BH=2﹣(2﹣ )= ,

在Rt△BEH中,BE2=BH2+EH2=( 2+(2﹣ 2=8﹣4


【解析】(1)連接CF,根據(jù)“HL”證明Rt△CDF和Rt△CEF全等,根據(jù)全等三角形對應(yīng)邊相等可得DF=EF,根據(jù)正方形的對角線平分一組對角可得∠EAF=45°,求出△AEF是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)可得AE=EF,然后等量代換即可得證;(2)根據(jù)正方形的對角線等于邊長的 倍求出AC,然后求出AE,過點(diǎn)E作EH⊥AB于H,判斷出△AEH是等腰直角三角形,然后求出EH=AH= AE,再求出BH,然后利用勾股定理列式計(jì)算即可得解.
【考點(diǎn)精析】本題主要考查了角平分線的性質(zhì)定理和勾股定理的概念的相關(guān)知識點(diǎn),需要掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(3,0),與y軸交于C(0,3),頂點(diǎn)為D(1,4),對稱軸為DE.

(1)拋物線的解析式是;
(2)如圖(2),點(diǎn)P是AD上一個(gè)動點(diǎn),P′是P關(guān)于DE的對稱點(diǎn),連接PE,過P′作P′F∥PE交x軸于F.設(shè)S四邊形EPP′F=y,EF=x,求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(3)在(1)中的拋物線上是否存在點(diǎn)Q,使△BCQ成為以BC為直角邊的直角三角形?若存在,求出Q的坐標(biāo);若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線、上,且,,之間的距離為2 , ,之間的距離為3 ,則AC2= _______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以邊長為2的正方形的中心O為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點(diǎn),則線段AB的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,點(diǎn)D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點(diǎn)F.
(2)由(1)得:BF與邊AC的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3a(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,2),連接BC.

(1)求該拋物線的解析式和對稱軸,并寫出線段BC的中點(diǎn)坐標(biāo);
(2)將線段BC先向左平移2個(gè)單位長度,再向下平移m個(gè)單位長度,使點(diǎn)C的對應(yīng)點(diǎn)C1恰好落在該拋物線上,求此時(shí)點(diǎn)C1的坐標(biāo)和m的值;
(3)若點(diǎn)P是該拋物線上的動點(diǎn),點(diǎn)Q是該拋物線對稱軸上的動點(diǎn),當(dāng)以P,Q,B,C四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,BE平分∠ABCAC邊于點(diǎn)E,過點(diǎn)EDEBCAB于點(diǎn)D,

(1)求證:△BDE為等腰三角形;

(2)若點(diǎn)DAB中點(diǎn),AB=6,求線段BC的長;

(3)在圖2條件下,若∠BAC=60°,動點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿射線BE運(yùn)動,請直接寫出圖3當(dāng)△ABP為等腰三角形時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正確的有(
A.1個(gè)
B.2 個(gè)
C.3 個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;
(2)動點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動.規(guī)定其中一個(gè)動點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案