【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6 ,則另一直角邊BC的長(zhǎng)為

【答案】7
【解析】解法一:如圖1所示,過O作OF⊥BC,過A作AM⊥OF,
∵四邊形ABDE為正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四邊形ACFM為矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF為等腰直角三角形,
∵OC=6 ,
∴根據(jù)勾股定理得:CF2+OF2=OC2
解得:CF=OF=6,
∴FB=OM=OF﹣FM=6﹣5=1,
則BC=CF+BF=6+1=7.
故答案為:7.
解法二:如圖2所示,

過點(diǎn)O作OM⊥CA,交CA的延長(zhǎng)線于點(diǎn)M;過點(diǎn)O作ON⊥BC于點(diǎn)N.
易證△OMA≌△ONB,∴OM=ON,MA=NB.
∴O點(diǎn)在∠ACB的平分線上,
∴△OCM為等腰直角三角形.
∵OC=6 ,
∴CM=ON=6.
∴MA=CM﹣AC=6﹣5=1,
∴BC=CN+NB=6+1=7.
故答案為:7.
過O作OF垂直于BC,再過A作AM垂直于OF,由四邊形ABDE為正方形,得到OA=OB,∠AOB為直角,可得出兩個(gè)角互余,再由AM垂直于MO,得到△AOM為直角三角形,其兩個(gè)銳角互余,利用同角的余角相等可得出一對(duì)角相等,再由一對(duì)直角相等,OA=OB,利用AAS可得出△AOM與△BOF全等,由全等三角形的對(duì)應(yīng)邊相等可得出AM=OF,OM=FB,由三個(gè)角為直角的四邊形為矩形得到ACFM為矩形,根據(jù)矩形的對(duì)邊相等可得出AC=MF,AM=CF,等量代換可得出CF=OF,即△COF為等腰直角三角形,由斜邊OC的長(zhǎng),利用勾股定理求出OF與CF的長(zhǎng),根據(jù)OF﹣MF求出OM的長(zhǎng),即為FB的長(zhǎng),由CF+FB即可求出BC的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD的邊長(zhǎng)為4,點(diǎn)E為BC的中點(diǎn),點(diǎn)P為AB上一動(dòng)點(diǎn),沿PE翻折△BPE得到△FPE,直線PF交CD邊于點(diǎn)Q,交直線AD于點(diǎn)G,聯(lián)接EQ.

(1)如圖,當(dāng)BP=1.5時(shí),求CQ的長(zhǎng);
(2)如圖,當(dāng)點(diǎn)G在射線AD上時(shí),BP=x,DG=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)延長(zhǎng)EF交直線AD于點(diǎn)H,若△CQE與△FHG相似,求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D點(diǎn),連接CD.

(1)求證:∠A=∠BCD;
(2)若M為線段BC上一點(diǎn),試問當(dāng)點(diǎn)M在什么位置時(shí),直線DM與⊙O相切?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為
(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號(hào)得正”,得
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集為x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集為;
(2)分式不等式 的解集為;
(3)解一元二次不等式2x2﹣3x<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,已知點(diǎn)E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣4,0)、B(1,0)、C(﹣2,6).

(1)求經(jīng)過A、B、C三點(diǎn)的拋物線解析式;
(2)設(shè)直線BC交y軸于點(diǎn)E,連接AE,求證:AE=CE;
(3)設(shè)拋物線與y軸交于點(diǎn)D,連接AD交BC于點(diǎn)F,試問以A、B、F為頂點(diǎn)的三角形與△ABC相似嗎?
(4)若點(diǎn)P為直線AE上一動(dòng)點(diǎn),當(dāng)CP+DP取最小值時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,F(xiàn)是BC上一點(diǎn),且AF=BC,DE⊥AF,垂足是E,連接DF.求證:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)對(duì)(a,b),(c,d),定義:當(dāng)且僅當(dāng)a=c且b=d時(shí),(a,b)=(c,d);并定義其運(yùn)算如下:(a,b)※(c,d)=(ac-bd,ad+bc),如(1,2)※(3,4)=(1×3-2×4,1×4+2×3)=(-3,10),若(x,y)※(1,-1)=(1,3),則xy的值是( )
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購(gòu)進(jìn)A,B兩種鋼筆,若購(gòu)進(jìn)A種鋼筆2支,B種鋼筆3支,共需90元;購(gòu)進(jìn)A種鋼筆3支,B種鋼筆5支,共需145元.
(1)求A、B兩種鋼筆每支各多少元?
(2)若該文具店要購(gòu)進(jìn)A,B兩種鋼筆共90支,總費(fèi)用不超過1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購(gòu)買方案?
(3)文具店以每支30元的價(jià)格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進(jìn)價(jià)不變的基礎(chǔ)上再購(gòu)進(jìn)一批B種鋼筆,漲價(jià)賣出,經(jīng)統(tǒng)計(jì),B種鋼筆售價(jià)為30元時(shí),每月可賣68支;每漲價(jià)1元,每月將少賣4支,設(shè)文具店將新購(gòu)進(jìn)的B種鋼筆每支漲價(jià)a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求W與a之間的函數(shù)關(guān)系式,并且求出B種鉛筆銷售單價(jià)定為多少元時(shí),每月獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案