【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y= 的圖象交于A(3,1),B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D.
(1)求a,k的值及點(diǎn)B的坐標(biāo);
(2)直接寫出不等式ax﹣1≥ 的解集;
(3)在x軸上存在一點(diǎn)P,使得△POA與△OAC相似(不包括全等),請你求出點(diǎn)P的坐標(biāo).
【答案】
(1)解:把A(3,1)代入一次函數(shù)y=ax﹣1與反比例函數(shù)y= 的解析式中,得到a= ,k=3,
由 ,解得 或 ,
∴B(﹣ ,﹣2).
(2)解:觀察圖象可知不等式ax﹣1≥ 的解集為﹣ ≤x<0或x≥3.
(3)解:如圖當(dāng)∠APO=∠OAC時(shí),∵∠AOC=∠POA,
∴△AOC∽△POA,
∴ = ,
∴OA2=OCOP,
易知OA= ,OC= ,
∴10= OP,
∴OP= ,
∴P( ,0).
∴滿足條件的點(diǎn)P的坐標(biāo)為( ,0).
【解析】(1)把A(3,1)代入一次函數(shù)y=ax﹣1與反比例函數(shù)y= 的解析式中,可得a= ,k=3,構(gòu)建方程組即可求出點(diǎn)B坐標(biāo);(2)觀察圖象一次函數(shù)的圖象在反比例函數(shù)的圖象的上方即可,寫出相應(yīng)的自變量的取值范圍即可;(3)如圖當(dāng)∠APO=∠OAC時(shí),又∠AOC=∠POA,推出△AOC∽△POA,可得 = ,即OA2=OCOP,由此求出OP即可解決問題;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了加強(qiáng)訓(xùn)練學(xué)生的籃球和足球運(yùn)球技能,準(zhǔn)備購買一批籃球和足球用于訓(xùn)練,已知1個(gè)籃球和2個(gè)足球共需116元;2個(gè)籃球和3個(gè)足球共需204元
求購買1個(gè)籃球和1個(gè)足球各需多少元?
若學(xué)校準(zhǔn)備購進(jìn)籃球和足球共40個(gè),并且總費(fèi)用不超過1800元,則籃球最多可購買多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AE與CD的延長線交于點(diǎn)A,∠AEO=∠C,OE交BC于點(diǎn)F.
(1)求證:OE∥BD;
(2)當(dāng)⊙O的半徑為5,sin∠DBA= 時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);
(2)在圖①中,若∠AOC=a,直接寫出∠DOE的度數(shù)(用含a的代數(shù)式表示);
(3)將圖①中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置.
①探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;
②在∠AOC的內(nèi)部有一條射線OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,試確定∠AOF與∠DOE的度數(shù)之間的關(guān)系,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,分別過點(diǎn)C,D作BD,AC的平行線,相交于點(diǎn)E.若AD=6,則點(diǎn)E到AB的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這四邊行ABCD中,點(diǎn)M、N分別在AB,CD邊上,將四邊形ABCD沿MN翻折,使點(diǎn)B、C分別在四邊形外部點(diǎn)B1 , C1處,則∠A+∠B1+∠C1+∠D= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,∠BOC=60°,頂點(diǎn)C的坐標(biāo)為(m,3 ),反比例函數(shù)y= 的圖象與菱形對角線AO交D點(diǎn),連接BD,當(dāng)DB⊥x軸時(shí),k的值是( )
A.6
B.﹣6
C.12
D.﹣12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com