【題目】如圖,正方形紙片ABCD,P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A,點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在點(diǎn)P處,點(diǎn)C落在點(diǎn)G處,PG交DC于點(diǎn)H,折痕為EF,連接BP,BH.BH交EF于點(diǎn)M,連接PM.下列結(jié)論:①BE=PE;②EF=BP;③PB平分∠APG;④MH=MF;⑤BP=BM,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 5 B. 4 C. 3 D. 2

【答案】B

【解析】

①③利用正方形的性質(zhì)、翻折不變性即可解決問(wèn)題;
②構(gòu)造全等三角形即可解決問(wèn)題;
④利用特殊位置,判定結(jié)論即可;
⑤只要證明△PBM是等腰直角三角形即可解決問(wèn)題;

如圖1,

根據(jù)翻折不變性可知:PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.故①③正確;
如圖1中,作FK⊥AB于K.設(shè)EF交BP于O.

∵∠FKB=∠KBC=∠C=90°,
∴四邊形BCFK是矩形,
∴KC=BC=AB,
∵EF⊥PB,
∴∠BOE=90°,
∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,
∴∠ABP=∠EFK,∵∠A=∠EKF=90°,
∴△ABP≌△KFE(ASA),
∴EF=BP,故②正確,
如圖2,過(guò)B作BQ⊥PH,垂足為Q.

由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH(HL)
∴∠QBH=∠HBC,∠ABP=∠PBQ,
∴∠PBH=∠PBQ+∠QBH=∠ABC=45°,
∵M(jìn)P=MB,
∴△PBM是等腰直角三角形,
∴PB=BM,故⑤正確;
當(dāng)?shù)萈與A重合時(shí),顯然MH>MF,故④錯(cuò)誤,
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,直角∠MPN的頂點(diǎn)P與點(diǎn)O重合,直角邊PM,PN分別與OA,OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BCE、F兩點(diǎn),連接EFOB于點(diǎn)G,則下列結(jié)論中正確的是_____.

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(4)OGBD=AE2+CF2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商廈今年一月份銷(xiāo)售額為萬(wàn)元,二月份由于種種原因,經(jīng)營(yíng)不善,銷(xiāo)售額下降,以后加強(qiáng)改進(jìn)管理,經(jīng)減員增效,大大激發(fā)了全體員工的積極性,月銷(xiāo)售額大幅度上升,到四月份銷(xiāo)售額猛增到萬(wàn)元,求三、四月份平均每月增長(zhǎng)的百分率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖反映了初三(1)班、(2)班的體育成績(jī)。

1)不用計(jì)算,根據(jù)條形統(tǒng)計(jì)圖,_______班學(xué)生的體育成績(jī)好一些。

2)從圖中觀察出:三(1)班學(xué)生體育成績(jī)等級(jí)的眾數(shù)是_______;三(2)班學(xué)生體育成績(jī)等級(jí)的眾數(shù)是_______.

3)如果依次將不及格、及格、中、良好、優(yōu)秀記為55、65、7585、95分,請(qǐng)你觀察計(jì)算一下初三(1),(2)班的平均成績(jī)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲和乙玩一種游戲:從裝有大小相同的個(gè)紅球和一個(gè)黃球的袋子中,任意摸出球,如果摸到黃球,甲得分;如果摸到紅球,乙得分.

你認(rèn)為這個(gè)游戲公平嗎?

假設(shè)玩這個(gè)游戲次,甲大約得多少分,乙大約得多少分?

如果你認(rèn)為游戲不公平,那么怎樣修改得分標(biāo)準(zhǔn)才公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售一種成本為的水產(chǎn)品,若按銷(xiāo)售,一個(gè)月可售出,售價(jià)毎漲元,月銷(xiāo)售量就減少

寫(xiě)出月銷(xiāo)售利潤(rùn)(元)與售價(jià)(元)之間的函數(shù)表達(dá)式;

當(dāng)售價(jià)定為多少元時(shí),該商店月銷(xiāo)售利潤(rùn)為元?

當(dāng)售價(jià)定為多少元時(shí)會(huì)獲得最大利潤(rùn)?求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,BEACE,且D、E分別是AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=CE
1)∠ABC的度數(shù).
2)求證:BE=FE

查看答案和解析>>

同步練習(xí)冊(cè)答案