【題目】如圖,拋物線與x軸交于點(diǎn)A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C.
(1)求A,B兩點(diǎn)的坐標(biāo).
(2)點(diǎn)P是線段BC下方的拋物線上的動(dòng)點(diǎn),連結(jié)PC,PB.
①是否存在一點(diǎn)P,使△PBC的面積最大,若存在,請(qǐng)求出△PBC的最大面積;若不存在,試說(shuō)明理由.
②連結(jié)AC,AP,AP交BC于點(diǎn)F,當(dāng)∠CAP=∠ABC時(shí),求直線AP的函數(shù)表達(dá)式.
【答案】(1)A、B的坐標(biāo)分別為(﹣1,0)、(4,0);(2)①存在,見(jiàn)解析,面積的最大值為4,②.
【解析】
(1)令y=0,則x=1或-4,令x=0,則y=2,即可求解;
(2)①S△PBC=×PH×OB,即可求解;
②證明△ACF∽△BCA,求得:CF=,BF=BC-CF=,由BF2=(m-4)2+(m-2)2=()2,即可求解.
(1)令y=0,則x=1或﹣4,令x=0,則y=2,
即點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,0)、(4,0)、(0,﹣2);
(2)①存在,理由:過(guò)點(diǎn)P作HP∥y軸交BC于點(diǎn)H,
將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式y=kx+b得:,解得:,
故直線BC的表達(dá)式為:y=x﹣2,
設(shè)點(diǎn)P坐標(biāo)為(x,)、H(x,x﹣2),
S△PBC=×PH×OB=×(x﹣2)×4=﹣x2+4x,
∵﹣1<0,故S△PBC有最大值,
當(dāng)x=2時(shí),面積的最大值為4,此時(shí)點(diǎn)P(2,﹣3);
②∠CAP=∠ABC,∠ACF=∠ACF,∴△ACF∽△BCA,
∴AC2=BCCF,其中AC=,BC=2,
故:CF=,BF=BC﹣CF=,
設(shè)點(diǎn)F的坐標(biāo)為(m,m﹣2),
則:BF2=(m﹣4)2+(m﹣2)2=()2,
解得:m=1或7(舍去m=7),
故點(diǎn)F坐標(biāo)(1,﹣),
將點(diǎn)A、F坐標(biāo)代入一次函數(shù)表達(dá)式y=kx+b,
同理可得:直線AF(或直線AP)的表達(dá)式為:y=﹣x﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,AB=4,點(diǎn)F,C是⊙O上兩點(diǎn),連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過(guò)點(diǎn)C作CD⊥AF交AF的延長(zhǎng)線于點(diǎn)D,垂足為點(diǎn)D.
(1)求扇形OBC的面積(結(jié)果保留π);
(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F
(1)求證:AC是⊙O的切線;
(2)若CF=2,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙飛機(jī)是我們兒時(shí)快樂(lè)的回憶,現(xiàn)有一張長(zhǎng)為290mm,寬為200mm的白紙,如圖所示,以下面幾個(gè)步驟折出紙飛機(jī):(說(shuō)明:第一步:白紙沿著EF折疊,AB邊的對(duì)應(yīng)邊A′B′與邊CD平行,將它們的距離記為x;第二步:將EM,MF分別沿著MH,MG折疊,使EM與MF重合,從而獲得邊HG與A′B′的距離也為x),則PD=______mm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師在微信群發(fā)了這樣一個(gè)圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點(diǎn)為F,下列四位同學(xué)的說(shuō)法不正確的是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2011年高中招生考試,某中學(xué)對(duì)全校九年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息,下列問(wèn)題:
(1)請(qǐng)將表示成績(jī)類別為“中”的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,表示成績(jī)類別為“優(yōu)”的扇形所對(duì)應(yīng)的圓心角是 72 度;
(3)學(xué)校九年級(jí)共有1000人參加了這次數(shù)學(xué)考試,估算該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)査,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽(tīng)講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:
(1)在這次評(píng)價(jià)中,一共抽査了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整:
(4)如果全市有30000名初二學(xué)生,那么在試卷評(píng)講課中,請(qǐng)估計(jì)“獨(dú)立思考”的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視“經(jīng)典詠流傳”開(kāi)播以來(lái)受到社會(huì)廣泛關(guān)注.我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛(ài)情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問(wèn)題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;
(4)在抽取的A類5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹(shù)形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com