【題目】某景點(diǎn)試開放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過30人時(shí),人均收費(fèi)120元;超過30人且不超過m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過一定數(shù)量時(shí),會(huì)出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.
【答案】(1)y=;(2)30<m≤75.
【解析】
試題分析:(1)根據(jù)收費(fèi)標(biāo)準(zhǔn),分0<x≤30,30<x≤m,m<x≤100分別求出y與x的關(guān)系即可.
(2)由(1)可知當(dāng)0<x≤30或m<x<100,函數(shù)值y都是隨著x是增加而增加,30<x≤m時(shí),,根據(jù)二次函數(shù)的性質(zhì)即可解決問題.
試題解析:(1)y=.
(2)由(1)可知當(dāng)0<x≤30或m<x<100,函數(shù)值y都是隨著x是增加而增加,當(dāng)30<x≤m時(shí),,∵a=﹣1<0,∴x≤75時(shí),y隨著x增加而增加,∴為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,∴30<m≤75.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語,其具體信息匯集如下:
如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標(biāo)語CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)不透明的布袋里,都裝有3個(gè)大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).
(1)請你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文文和彬彬在證明“有兩個(gè)角相等的三角形是等腰三角形”這一命題時(shí),畫出圖形,寫出“已知”,“求證”(如圖),她們對各自所作的輔助線描述如下:
文文:“過點(diǎn)A作BC的中垂線AD,垂足為D”;
彬彬:“作△ABC的角平分線AD”.
數(shù)學(xué)老師看了兩位同學(xué)的輔助線作法后,說:“彬彬的作法是正確的,而文文的作法需要訂正.”
(1)請你簡要說明文文的輔助線作法錯(cuò)在哪里;
(2)根據(jù)彬彬的輔助線作法,完成證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將拋物線y=(x﹣2)2+1向左平移1個(gè)單位,再向上平移3個(gè)單位,那么所得新拋物線的解析式為( 。
A.y=(x﹣3)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x+1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點(diǎn),與y軸交于點(diǎn)C,過拋物線上點(diǎn)M(1,3)作MN⊥x軸于點(diǎn)N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個(gè)單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點(diǎn)E、F.
①當(dāng)點(diǎn)F為M′O′的中點(diǎn)時(shí),求t的值;
②如圖2,若直線M′N′與拋物線相交于點(diǎn)G,過點(diǎn)G作GH∥M′O′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時(shí)t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形是“等對角四邊形”, , , .求, 的度數(shù).
(2)在探究“等對角四邊形”性質(zhì)時(shí):
① 小紅畫了一個(gè)“等對角四邊形”(如圖2),其中, ,此時(shí)她發(fā)現(xiàn)成立.請你證明此結(jié)論.
② 由此小紅猜想:“對于任意‘等對角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形”中, , ,AB=AD=4,.求∠D和對角線的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com