【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E、F分別在ODOC上的動點,且DE=CF,連接DFAE,AE的延長線交DF于點M,連接OM

1)求證:ADE≌△DCF;

2)求證:AMDF

3)當(dāng)CD=AF時,試判斷MOF的形狀,并說明理由.

【答案】(1)證明見解析;(2)證明見解析.(3)MOF是等腰三角形,理由見解析.

【解析】

1)根據(jù)DE=CF和正方形的性質(zhì),證明△AED≌△DFC;

2)由△AED≌△DFC得出∠EAD=FDC,然后利用等角代換可得出∠AMD=90°,得出了結(jié)論.

2)利用等腰三角形三線合一得:DM=FM,再由直角三角形斜邊中線可得結(jié)論.

1)證明:∵四邊形ABCD是正方形,

AD=DC,∠ADE=DCF=45°

AEDDFC中,

,

∴△AED≌△DFCSAS);

2)由①中AED≌△DFC,

∴∠EAD=FDC

∵∠ADM+FDC=90°,

∴∠ADM+EAD=90°

∴∠AMD=90°,

AMDF;

3MOF是等腰三角形,

理由是:∵AD=CD,CD=AF

AD=AF

AMDF

DM=FM,

∵∠DOF=90°,

OM=DF=FM,

∴△MOF是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點M,N的坐標(biāo)分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是(  )

A. a≤﹣1≤a< B. ≤a<

C. a≤a> D. a≤﹣1a≥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在一次用頻率去估計概率的實驗中,繪出了某一結(jié)果出現(xiàn)的頻率的折線圖,則符合這一結(jié)果的實驗可能是

A. 擲一枚正六面體的骰子,出現(xiàn)1點的概率

B. 拋一枚硬幣,出現(xiàn)正面的概率

C. 任意寫一個整數(shù),它能被2整除的概率

D. 從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,點A(﹣,0),點B(0,1)把△ABO繞點O順時針旋轉(zhuǎn),得△A'B'O,點A,B旋轉(zhuǎn)后的對應(yīng)點為A',B',記旋轉(zhuǎn)角為α(0°<α<360°).

(1)如圖①,當(dāng)點A′,B,B′共線時,求AA′的長.

(2)如圖②,當(dāng)α=90°,求直線ABAB′的交點C的坐標(biāo);

(3)當(dāng)點A′在直線AB上時,求BB′與OA′的交點D的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,且OA=OB

1)求證:四邊形ABCD是矩形;

2)若AB=2,∠AOB=60°,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,已知O是坐標(biāo)原點,B、C兩點的坐標(biāo)分別為(3,-1)、(2,1)。

(1)以O(shè)點為位似中心在y軸的左側(cè)將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點的對應(yīng)點B、C的坐標(biāo);

(3)如果OBC內(nèi)部一點M的坐標(biāo)為(x,y),寫出M的對應(yīng)點M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某儲運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用4小時,調(diào)進(jìn)物資2小時后開始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度均保持不變).儲運(yùn)部庫存物資(噸)與時間(小時)之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時間是(

A. 4小時B. 4.3小時C. 4.4小時D. 5小時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,交軸于點,直線過點軸交于點,與拋物線的另一個交點為,作軸于點.設(shè)點是直線上方的拋物線上一動點(不與點重合),過點軸的平行線,交直線于點,作于點.

1)填空:__________,__________,__________;

2)探究:是否存在這樣的點,使四邊形是平行四邊形?若存在,請求出點的坐標(biāo);若不存在,請說明理由;

3)設(shè)的周長為,點的橫坐標(biāo)為,求的函數(shù)關(guān)系式,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB8BC6,點E,F,GH分別在矩形ABCD各邊上,且AECG,BFDH,則四邊形EFGH周長的最小值為( 。

A. 10B. 4C. 20D. 8

查看答案和解析>>

同步練習(xí)冊答案