【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是(  )
A.
B.
C.
D.

【答案】C
【解析】解:A、對于直線y=ax+b來說,由圖象可以判斷,a>0,b>0;而對于拋物線y=ax2﹣bx來說,對稱軸x= >0,應(yīng)在y軸的右側(cè),故不合題意,圖形錯誤;
B、對于直線y=ax+b來說,由圖象可以判斷,a<0,b>0;而對于拋物線y=ax2+bx來說,對稱軸x= <0,應(yīng)在y軸的左側(cè),故不合題意,圖形錯誤;
C、對于直線y=ax+b來說,由圖象可以判斷,a>0,b>0;而對于拋物線y=ax2+bx來說,圖象開口向上,對稱軸x= >0,應(yīng)在y軸的右側(cè),故符合題意;
D、對于直線y=ax+b來說,由圖象可以判斷,a>0,b>0;而對于拋物線y=ax2+bx來說,圖象開口向下,a<0,故不合題意,圖形錯誤;
故選:C.
【考點精析】根據(jù)題目的已知條件,利用一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象的相關(guān)知識可以得到問題的答案,需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn);二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx與直線y=2x+4交于A(a,8)、B兩點,點P是拋物線上A、B之間的一個動點,過點P分別作x軸、y軸的平行線與直線AB交于點C和點E.

(1)求拋物線的解析式;
(2)若C為AB中點,求PC的長;
(3)如圖,以PC,PE為邊構(gòu)造矩形PCDE,設(shè)點D的坐標(biāo)為(m,n),請求出m,n之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用一個半徑為5cm的定滑輪帶動重物上升,滑輪上一點P旋轉(zhuǎn)了108°,假設(shè)繩索(粗細(xì)不計)與滑輪之間沒有滑動,則重物上升了( 。

A.πcm
B.2πcm
C.3πcm
D.5πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= 的圖象上.

(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點P,使得SAOP= SAOB , 求點P的坐標(biāo);
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標(biāo),并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BEAC相交于點M,則∠ADM的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩種客車共7輛,已知甲種客車載客量是30人,乙種客車載客量是45人.其中,每輛乙種客車租金比甲種客車多100元,5輛甲種客車和2輛乙種客車租金共需2300元.

(1)租用一輛甲種客車、一輛乙種客車各多少元?

(2)設(shè)租用甲種客車x輛,總租車費為y元,求yx的函數(shù)關(guān)系;在保證275名師生都有座位的前提下,求當(dāng)租用甲種客車多少輛時,總租車費最少,并求出這個最少費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經(jīng)過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.

(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AC=10m,BC=6m,且它們在同一條直線上,點M、N分別為線段ACBC的中點,則線段MN的長為_____

查看答案和解析>>

同步練習(xí)冊答案