如圖,在△ABC中,D是線段BC的中點,F(xiàn)、E分別是AD及其延長線上的點,且CF∥BE.
求證:DE=DF.

【答案】分析:根據(jù)平行線性質(zhì)得出∠FCD=∠EBD,由BD=DC,∠CDF=∠BDE,根據(jù)ASA推出△CDF≌△BDE即可.
解答:證明:∥BE,
∴∠FCD=∠EBD,
∵D為BC中點,
∴BD=DC,
在△CDF和△BDE中

∴△CDF≌△BDE(ASA),
∴CF=BE.
點評:本題考查了全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)角相等,對應(yīng)邊相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案