【題目】某村老楊家有耕地和林地共24公頃,今年每公頃耕地純收入為5500元,每公頃林地純收入為6000元,耕地與林地的純收入共137000元,為保護生態(tài)環(huán)境,增加收入,老楊計劃將部分耕地改為林地(改后每公頃耕地,林地純收入不變),要使改后的純收入為140000元.問:
(1)老楊家原有耕地,林地各多少公頃?
(2)老楊應(yīng)將多少公頃耕地改為林地?
【答案】(1)老楊家原有耕地14公頃,老楊家原有林地10公頃;(2)老楊應(yīng)將6公頃耕地改為林地.
【解析】
(1)設(shè)老楊家原有耕地x公頃,原有林地y公頃,根據(jù)耕地和林地數(shù)量之和為24公頃,純收入共137000元,列出方程組,解方程組即可;
(2)設(shè)老楊應(yīng)將m公頃耕地改為林地,分別表示出更改后耕地,林地面積,列出方程,解方程即可.
解:(1)設(shè)老楊家原有耕地x公頃,原有林地y公頃,
根據(jù)題意得:,
解得:.
答:老楊家原有耕地14公頃,原有林地10公頃.
(2)設(shè)老楊應(yīng)將m公頃耕地改為林地,則更改后耕地的面積為(14﹣m),林地的面積為(10+m)公頃,
由題意得:5500(14﹣m)+6000(10+m)=140000,
解得:m=6.
答:老楊應(yīng)將6公頃耕地改為林地.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時期數(shù)學(xué)家劉徽首創(chuàng)“割圓術(shù)”計算圓周率.隨著時代發(fā)展,現(xiàn)在人們依據(jù)頻率估計概率這一原理,常用隨機模擬的方法對圓周率π進行估計,用計算機隨機產(chǎn)生m個有序數(shù)對(x,y)(x,y是實數(shù),且0≤x≤1,0≤y≤1),它們對應(yīng)的點在平面直角坐標系中全部在某一個正方形的邊界及其內(nèi)部.如果統(tǒng)計出這些點中到原點的距離小于或等于1的點有n個,則據(jù)此可估計π的值為 . (用含m,n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足.D為線段AC的中點.在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為,.
(1)則A點的坐標為 ;點C的坐標為 .D點的坐標為 .
(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束.設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.
(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,△ABC的三個頂點坐標分別為A(0,4),B(2,4),C(3,﹣1).
(1)試在平面直角坐標系中,標出A、B、C三點;
(2)求△ABC的面積.
(3)若△A1B1C1與△ABC關(guān)于x軸對稱,寫出A1、B1、C1的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】喜歡探究的亮亮同學(xué)拿出形狀分別是長方形和正方形的兩塊紙片,其中長方形紙片的長為,寬為,且兩塊紙片面積相等.
(1)亮亮想知道正方形紙片的邊長,請你幫他求出正方形紙片的邊長;(結(jié)果保留根號)
(2)在長方形紙片上截出兩個完整的正方形紙片,面積分別為和,亮亮認為兩個正方形紙片的面積之和小于長方形紙片的總面積,所以一定能截出符合要求的正方形紙片來,你同意亮亮的見解嗎?為什么?(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:
(1)如圖①,在中,點、、分別在邊、、上,且,若,求的度數(shù).請將下面的解答過程補充完整,并填空.
(1)解:
,
(兩直線平行,內(nèi)錯角相等).
,
(___________________________________).
(__________________).
.
應(yīng)用:
(2)如圖②,在中,點、、分別在邊、、的延長線上,且,,若,求的大。ㄓ煤的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①絕對值等于本身的數(shù)是正數(shù);②將數(shù)60340精確到千位是③連接兩點的線段的長度就是兩點間的距離;④若AC=BC,則點C就是線段AB的中點.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com