【題目】在中,,,,設,.
(1)如圖1,當點在內,
①若,求的度數;
小明同學通過分析已知條件發(fā)現:是頂角為的等腰三角形,且,從而容易聯想到構造一個頂角為的等腰三角形.于是,他過點作,且,連接,發(fā)現兩個不同的三角形全等:_____________再利用全等三角形及等腰三角形的相關知識可求出的度數
請利用小王同學分析的思路,通過計算求得的度數為_____;
②小王在①的基礎上進一步進行探索,發(fā)現之間存在一種特殊的等量關系,請寫出這個等量關系,并加以證明.
(2)如圖2,點在外,那么之間的數量關系是否改變?若改變,請直接寫出它們的數量關系;若不變,請說明理由.
【答案】(1)①△BAD,△CAP, 63°;②β﹣α=90°;(2)改變,α+β=90°.
【解析】
(1)①先證明△BAD≌△CAP,根據全等三角形的性質得到CP=BD,根據等腰三角形的性質解答;②仿照①的作法解答即可;
(2)過點A作,且AD=AP,連接DP,DB,證明△BAD≌△CAP,根據全等三角形的性質得到PC=BD,結合圖形計算即可.
解:(1)①∵,,
∴∠BAC=∠DAP,
∴∠BAD=∠CAP,
在△BAD和△CAP中,
,
∴△BAD≌△CAP(SAS),
∴BD=CP,∠BDA=∠APC,
∵,
∴BD=,
如圖,過點A作AH⊥DP,垂足為點H,
∵,且,
∴∠APD=∠ADP=30°,
在Rt△APH中,cos∠APH=,
∴cos30°=,
∴
∵,AH⊥DP,
∴DP=2PH=,
∴BD=DP,
∴∠BPD=∠PBD,
∵,,,
∴
∵,∠APD=30°,
∴∠BPD=∠PBD=
∴∠BDP=,
∴∠BDA=∠BDP+∠ADP=,
∵∠BDA=∠APC,
∴,
∴,
故答案為:△BAD,△CAP, 63°;
②β﹣α=90°,
理由如下:由①得
∵,,
∴,
∵,∠APD=30°,
∴∠BPD=∠PBD=,
∴∠BDP=,
∴∠BDA=∠BDP+∠ADP=,
∵∠BDA=∠APC,
∴,
∴β﹣α=90°,
(2)改變,α+β=90°,理由如下:
過點A作∠DAP=120°,且AD=AP,連接DP,DB,過點A作AH⊥DP,垂足為點H,
∵,,
∴∠BAC=∠DAP,
∴∠BAD=∠CAP,
在△BAD和△CAP中,
,
∴△BAD≌△CAP(SAS),
∴BD=CP,∠BDA=∠APC,
∵,
∴BD=,
∵,且,
∴∠APD=∠ADP=30°,
在Rt△APH中,cos∠APH=,
∴cos30°=,
∴
∵,AH⊥DP,
∴DP=2PH=,
∴BD=DP,
∴∠BPD=∠PBD,
∵,∠APD=30°,
∴∠BPD=∠PBD=∠APB+∠APD=+30°,
∵,,
∴∠ADB=,
又∵∠ADP=30°,
∴∠BDP=∠ADB+∠ADP=+30°,
∵∠BPD+∠PBD+∠BDP=180°,
∴+30°++30°++30°=180°,
∴α+β=90°,
∴α、β之間的數量關系改變?yōu)?/span>α+β=90°.
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,BC=9, CA=12,∠ABC的平分線BD交AC與點D, DE⊥DB交AB于點E.
(1)設⊙O是△BDE的外接圓,求證:AC是⊙O的切線;
(2)設⊙O交BC于點F,連結EF,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象與軸交于、兩點,與軸交于點,的半徑為,為上一動點.
(1)求點,的坐標?
(2)是否存在點,使得為直角三角形?若存在,求出點的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形中,分別是上的點,且,則有結論成立;
如圖2,在四邊形中,分別是上的點,且是的一半, 那么結論是否仍然成立?若成立,請證明;不成立,請說明理由.
若將中的條件改為:如圖3,在四邊形中,,延長到點,延長到點,使得仍然是的一半,則結論是否仍然成立?若成立,請證明;不成立,請寫出它們的數量關系并證明
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售一種進價為每件10元的日用商品,經調查發(fā)現,該商品每天的銷售量(件)與銷售單價(元)滿足,設銷售這種商品每天的利潤為(元).
(1)求與之間的函數關系式;
(2)在保證銷售量盡可能大的前提下,該商場每天還想獲得2000元的利潤,應將銷售單價定為多少元?
(3)當每天銷售量不少于50件,且銷售單價至少為32元時,該商場每天獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一種簡易的手機架,將其結構簡化為圖2,由靠板,底座和頂板組成,測得,,,,,.
(1)求手機架的高(點到的距離);
(2)請通過計算確定厚度為的手機放置在手機架上能否有調節(jié)角度的空間.
(參考數據:,,,,結果精確到0.1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】長凝大蒜產于榆次區(qū)長凝鎮(zhèn),種植歷史悠久,清初曾被選為皇家貢品,在晉中以及省內外享有盛譽.秋天勤勞的農民們將大蒜編成串后進行銷售.小樂通過網店推廣家鄉(xiāng)特產,銷售大蒜.每串大蒜的成本是6元,銷售一段時間后,發(fā)現當售價為每串25元時,平均每天能售出12串.小樂想讓更多的人嘗到長凝大蒜,因此進行了降價銷售,經調查發(fā)現,每串大蒜每降價0.5元,平均每天多售出2串.若小樂既想保證平均每天獲利420元,又想擴大銷售量,那么每串大蒜應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(操作發(fā)現)
(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于30°),旋轉后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數;
②DE與EF相等嗎?請說明理由;
(類比探究)
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于45°),旋轉后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.請直接寫出探究結果:
①∠EAF的度數;
②線段AE,ED,DB之間的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com