【題目】如圖,在四邊形ABCD的外側(cè),以四邊形的邊為邊分別作四個小正方形,連接相鄰的兩個頂點,得到四個陰影三角形,則這四個陰影三角形的面積a、b、c、d滿足(
A.a+b=c+d
B.a2+b2=c2+d2
C.a+c=b+d
D.a2+c2=b2+d2

【答案】C
【解析】解:如圖,以△ABC的邊為邊分別正方形ABDE,正方形ACHG.
∵SAEG= AEGN= AEAGsin∠EAG,
SACB= ABCM= ABACsin∠CAM,
∵AB=AE,AC=AG,
∠EAG+∠BAC=180°,∠CAM+∠BAC=180°,
∴∠EAG=∠CAM,
∴SAEG=SABC
如圖1中,連接AC、BD.

由上面的結(jié)論可知,SABD=a,SBCD=c,SABC=b,SADC=d,
∵S四邊形ABCD=a+c=b+d,
∴a+c=b+d,
故選C.
【考點精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級數(shù)學(xué)興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin48°≈,tan48°≈sin64°≈,tan64°≈2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用因式分解計算(﹣2)101+(﹣2)100=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC和BD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是(
A.OA=OC,AD∥BC
B.∠ABC=∠ADC,AD∥BC
C.AB=DC,AD=BC
D.∠ABD=∠ADB,∠BAO=∠DCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,D是邊BC上一點,DEAB于點E,點F是線段AD上一點,連結(jié)EF、CF.

(1)若AD平分∠BAC,求證:EF=CF.

(2)若點F是線段AD的中點,試猜想線段EFCF的大小關(guān)系,并加以證明.

(3)在(2)的條件下,若∠BAC=45°,AD=6,直接寫出CE兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)報道,2018年全國普通高考報名人數(shù)約9750000人,數(shù)據(jù)9750000用科學(xué)記數(shù)法表示為9.75×10n,則n的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個三角板ABC,DEF,按如圖所示的位置擺放,點B與點D重合,邊AB與邊DE在同一條直線上(假設(shè)圖形中所有的點,線都在同一平面內(nèi)),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.現(xiàn)固定三角板DEF,將三角板ABC沿射線DE方向平移,當(dāng)點C落在邊EF上時停止運動.設(shè)三角板平移的距離為x(cm),兩個三角板重疊部分的面積為y(cm2).

(1)當(dāng)點C落在邊EF上時,x=_____cm;

(2)若兩個三角板重疊部分的圖形為四邊形時,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;

(3)設(shè)邊BC的中點為點M,邊DF的中點為點N,直接寫出在三角板平移過程中,點M與點N之間距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ADC的平分線交AB于點E,∠ABC的平分線交CD于點F,求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣12月份某一天的天氣預(yù)報為氣溫﹣2~5℃,該天的溫差為(
A.﹣3℃
B.﹣7℃
C.3℃
D.7℃

查看答案和解析>>

同步練習(xí)冊答案