【題目】觀察下列兩個(gè)等式: , ,給出定義如下:

我們稱使等式成立的一對有理數(shù), 共生有理數(shù)對,記為(, ),如:數(shù)對( ),( ),都是共生有理數(shù)對

1判斷數(shù)對( ),( 是不是共生有理數(shù)對”,寫出過程;

(2)若(, )是共生有理數(shù)對,求的值;

(3)若( )是共生有理數(shù)對,則(, 共生有理數(shù)對(填不是);說明理由;

(4)請?jiān)賹懗鲆粚Ψ蠗l件的 共生有理數(shù)對 (注意:不能與題目中已有的共生有理數(shù)對重復(fù))

【答案】1)( );(2(3)是(4) )或(,

【解析】試題分析:(1)利用共生有理數(shù)對的定義即可判斷;

2)把a,3帶入中,得到關(guān)于a的一元一次方程,解得a值即可;

3)依據(jù)定義判斷即可;

4)依據(jù)定義寫出一對數(shù)值即可,注意答案不唯一.

試題解析:1-2-1=-3,(-2) ×1+1=-1,-3≠-1,故, 不是共生有理數(shù)對

3-=,+1=,故(3 )是共生有理數(shù)對;

2)由題意得: ,解得

3)是.

理由: , ,

m,n)是共生有理數(shù)對

m-n=mn+1,

-n+m=mn+1,

-n,-m共生有理數(shù)對;

4)(, )或(, )等(答案不唯一,只要不和題中重復(fù)即可).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的邊長為3,點(diǎn)AC分別在x軸,y軸的正半軸上,點(diǎn)D1,0)在OA上,POB上一動點(diǎn),則PA+PD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象的一支位于第一象限.

(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;

(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于軸對稱,若△OAB的面積為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某種窗戶由上下兩部分組成,其上部是用木條圍成的半圓形,且半圓內(nèi)部用了三根等長的木條分隔,下部是用木條圍成的邊長相同的四個(gè)小正方形,木條寬厚不計(jì),已知下部的小正方形的邊長為a米.

1)用含a的式子分別表示窗戶的面積和木條用料(實(shí)線部分)的總長;

2)若a1,窗戶上安裝的是玻璃,玻璃每平方米25元,木條每米20元,求制作這扇窗戶需要多少元?(π3,結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在第一象限內(nèi)的圖象如圖所示,點(diǎn)的圖象上一動點(diǎn),作軸于點(diǎn),交的圖象于點(diǎn),作軸于點(diǎn),交的圖象于點(diǎn),給出如下結(jié)論:①的面積相等;②始終相等;③四邊形的面積大小不會發(fā)生變化;④,其中正確的結(jié)論序號是(

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點(diǎn)C和點(diǎn)D處,CAABADBABB,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應(yīng)該建在距點(diǎn)A多少km處,才能使它到兩所學(xué)校的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上AB兩點(diǎn)對應(yīng)的數(shù)分別為ab,且ab滿足等式,p為數(shù)軸上一動點(diǎn),對應(yīng)的數(shù)為x

______,______,線段______

數(shù)軸上是否存在點(diǎn)p,使?若存在,求出x的值;若不存在,請說明理由.

的條件下,若M,N分別是線段ABPB的中點(diǎn),試求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB,點(diǎn)C、點(diǎn)D在直線AB上,并且CD=8,ACCB=12,BDAB=23,則AB=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結(jié)論有_______個(gè).

查看答案和解析>>

同步練習(xí)冊答案