【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1ax+ba0)的圖象與y軸相交于點A,與反比例函數(shù)y2k0)的圖象相交于點B3,2)、C(﹣1,n).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)根據(jù)圖象,直接寫出y1y2x的取值范圍.

【答案】(1)y12x42)﹣1x0x3

【解析】

1)利用待定系數(shù)法求出反比例函數(shù)解析式,進(jìn)而求出點C坐標(biāo),最后用再用待定系數(shù)法求出一次函數(shù)解析式;

2)利用圖象直接得出結(jié)論.

1)將點B3,2)代入y2,得:k3×26,

y2,

當(dāng)x=﹣1時,y2=﹣6,

則點C(﹣1,﹣6),

將點B32),C(﹣1,﹣6)代入y1ax+b,

得:

解得,

y12x4

2)由函數(shù)圖象知﹣1x0x3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計算:

喝酒后幾時血液中的酒精含量達(dá)到最大值?最大值為多少?

當(dāng)=5時,y=45.求k的值.

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.

(1)作出ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若(1)中所作的角平分線交AD于點E,AFBE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+ca,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab0;②2a+b=0;③3a+c0;④a+b≥mam+b)(m為實數(shù));⑤當(dāng)﹣1x3時,y0,其中正確的序號____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

(1)每千克核桃應(yīng)降價多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線yax22ax3x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,頂點為D,且過點(2,﹣3a).

1)求拋物線的解析式;

2)拋物線上是否存在一點P,過點PPMBD,垂足為點MPM2DM?若存在,求點P的坐標(biāo);若不存在,說明理由.

3)在(2)的條件下,求△PMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我國海監(jiān)船在釣魚島附近的O處觀測到一可疑船正勻速直線航行我國海域,當(dāng)該可疑船位于點O的北偏東30°方向上的點A處(OA=20km)時,我方開始向?qū)Ψ胶霸,但該可疑船仍勻速航行?/span>40min后,又測得該可疑船位于點O的正北方向上的點B處,且OB=20km,求該可疑船航行的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某賓館有50個房間供游客居住,當(dāng)每個房間每天的定價為180元時,房間會全部住滿;當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費(fèi)用.

1)若房價定為200元時,求賓館每天的利潤;

2)房價定為多少時,賓館每天的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過點A、BC

(1)求拋物線的解析式;

(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標(biāo)為t,設(shè)拋物線對稱軸lx軸交于一點E,連接PE,交CDF,求以C、EF為頂點三角形與△COD相似時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案