【題目】某次知識(shí)競(jìng)賽共有20道題,每一題答對(duì)得10分,答錯(cuò)或不答都扣5.小明得分要超過90分,他至少要答對(duì)多少道題?若設(shè)小明答對(duì)了x道題,則由題意可列出的不等式為( )

A.10x+5(20x)90B.10x+5(20x)90

C.10x5(20x)90D.10x5(20x)90

【答案】C

【解析】

根據(jù)答對(duì)題的得分:10x;答錯(cuò)題的得分:﹣5(20x),得出不等關(guān)系:得分要超過90.

解:由題意可列出的不等式為10x5(20x)90

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以點(diǎn)(2,1)為圓心,1為半徑的圓必定( 。

A.x軸相切、與y軸相離B.x軸、y軸都相離

C.x軸相離、與y軸相切D.x軸、y軸都相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線L:(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過y軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關(guān)系.此時(shí),直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.

(1)若直線y=mx+1與拋物線具有“一帶一路”關(guān)系,求m,n的值;

(2)若某“路線”L的頂點(diǎn)在反比例函數(shù)的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;

(3)當(dāng)常數(shù)k滿足≤k≤2時(shí),求拋物線L:的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市居民用電價(jià)格改革方案已出臺(tái),為鼓勵(lì)居民節(jié)約用電,對(duì)居民生活用電實(shí)行階梯制價(jià)格(見表):

一戶一表用電量

不超過a千瓦時(shí)

超過a千瓦時(shí)的部分

單價(jià)(元/千瓦時(shí))

0.5

0.6

小芳家二月份用電200千瓦時(shí),交電費(fèi)105元,則a_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,錯(cuò)誤的是( )

A.兩條對(duì)角線互相垂直的平行四邊形是菱形

B.兩條對(duì)角線相等的平行四邊形是菱形

C.一組鄰邊相等的平行四邊形是菱形

D.四邊形相等的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程中解為x=2的是( )
A.3x+(10﹣x)=20
B.4(x+0.5)+x=7
C.x=﹣ x+3
D. (x+14)= (x+20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分線,垂足為D,交AC于E.
(1)若∠ABE=40°,求∠EBC的度數(shù);
(2)若△ABC的周長(zhǎng)為41cm,一邊長(zhǎng)為15cm,求△BCE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1與C2為“友好拋物線”.

(1)求拋物線C2的解析式.

(2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.

(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過程.

解一元二次不等式:0.

解:設(shè)=0,解得:=0,=5,則拋物線y=與x軸的交點(diǎn)坐標(biāo)為(0,0)和(5,0).畫出二次函數(shù)y=的大致圖象(如圖所示),由圖象可知:當(dāng)x0,或x5時(shí)函數(shù)圖象位于x軸上方,此時(shí)y0,即0,所以,一元二次不等式0的解集為:x0或x5.

通過對(duì)上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:

(1)上述解題過程中,滲透了下列數(shù)學(xué)思想中的 .(只填序號(hào))

①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想

(2)一元二次不等式0的解集為

(3)用類似的方法解一元二次不等式:0.

查看答案和解析>>

同步練習(xí)冊(cè)答案