(2011•衢州)△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,
(1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2),則s2=;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為s3,繼續(xù)操作下去…,則第10次剪取時,s10=;
(3)求第10次剪取后,余下的所有小三角形的面積之和.
解:(1)解法1:如圖甲,由題意,得AE=DE=EC,即EC=1,S正方形CFDE=12=1
如圖乙,設(shè)MN=x,則由題意,得AM=MQ=PN=NB=MN=x,
,
解得

又∵
∴甲種剪法所得的正方形面積更大.
說明:圖甲可另解為:由題意得點D、E、F分別為AB、AC、BC的中點,S正方形OFDE=1.
解法2:如圖甲,由題意得AE=DE=EC,即EC=1,
如圖乙,設(shè)MN=x,則由題意得AM=MQ=QP=PN=NB=MN=x,
,
解得
又∵,即EC>MN.
∴甲種剪法所得的正方形面積更大.
(2)
(3)解法1:探索規(guī)律可知:
剩余三角形面積和為=
解法2:由題意可知,
第一次剪取后剩余三角形面積和為2﹣S1=1=S1
第二次剪取后剩余三角形面積和為,
第三次剪取后剩余三角形面積和為,

第十次剪取后剩余三角形面積和為.解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•衢州)某花圃用花盆培育某種花苗,經(jīng)過試驗發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系,每盆植入3株時,平均單株盈利3元,以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元,要使每盆的盈利達到10元,每盆應(yīng)該植多少株?
小明的解法如下:
解:設(shè)每盆花苗增加x株,則每盆花苗有(x+3)株,平均單株盈利為(3﹣0.5x)元,
由題意得(x+3)(3﹣0.5x)=10,
化簡,整理得:x2﹣3x+=0
解這個方程,得:x1=1,x2=2,
答:要使每盆的盈利達到10元,每盆應(yīng)該植入4株或5株.
(1)本題涉及的主要數(shù)量有每盆花苗株數(shù),平均單株盈利,每盆花苗的盈利等,請寫出兩個不同的等量關(guān)系:_____________________________________________________,
_____________________________________________________________
(2)請用一種與小明不相同的方法求解上述問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•衢州)研究問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量?
操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球?qū)嶒,摸球(qū)嶒灥囊螅合葦嚢杈鶆颍看蚊鲆粋球,放回盒中,再繼續(xù).
活動結(jié)果:摸球?qū)嶒灮顒右还沧隽?0次,統(tǒng)計結(jié)果如下表:
球的顏色
無記號
有記號
紅色
黃色
紅色
黃色
摸到的次數(shù)
18
28
2
2
推測計算:由上述的摸球?qū)嶒灴赏扑悖?br />(1)盒中紅球、黃球各占總球數(shù)的百分比分別是多少?
(2)盒中有紅球多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東日照卷)數(shù)學(xué) 題型:解答題

(2011•衢州)已知兩直線l1,l2分別經(jīng)過點A(1,0),點B(﹣3,0),并且當(dāng)兩直線同時相交于y正半軸的點C時,恰好有l(wèi)1⊥l2,經(jīng)過點A、B、C的拋物線的對稱軸與直線l2交于點K,如圖所示.
(1)求點C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請說明理由;
(3)當(dāng)直線l2繞點C旋轉(zhuǎn)時,與拋物線的另一個交點為M,請找出使△MCK為等腰三角形的點M,簡述理由,并寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東煙臺卷)數(shù)學(xué) 題型:解答題

(2011•衢州)如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.
(1)求證:AD=EC;
(2)當(dāng)∠BAC=Rt∠時,求證:四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•衢州)在直角坐標(biāo)系中,有如圖所示的Rt△ABO,AB⊥x軸于點B,斜邊AO=10,sin∠AOB=,反比例函數(shù)的圖象經(jīng)過AO的中點C,且與AB交于點D,則點D的坐標(biāo)為____________

查看答案和解析>>

同步練習(xí)冊答案