【題目】如圖,在平面直角坐標系中,△ABCABC是以坐標原點O為位似中心的位似圖形,且點B(3,1),B′(6,2).

(1)請你根據(jù)位似的特征并結(jié)合點B的坐標變化回答下列問題:

若點A(,3),A的坐標為______;

②△ABCABC的相似比為______;

(2)ABC的面積為m,ABC的面積.(用含m的代數(shù)式表示)

【答案】(1)(5,6),1:2;(2)4m

【解析】

(1)①觀察點B點和B′點的坐標得到位似比為2,然后根據(jù)此規(guī)律確定A′的坐標(5,6);
利用對應(yīng)點坐標的變化即可得出相似比;

(2)利用位似圖形面積比等于相似比的平方進而得出答案.

解:(1)①∵△ABC和△A′B′C′是以坐標原點O為位似中心的位似圖形,

∵點B(3,1),B′(6,2),∴位似比為2,
∴若點A(,3),則A′的坐標(5,6);
②△ABC與△A′B′C′的相似比為1:2;
故答案為(5,6),1:2;
(2)∵△ABC與△A'B'C'的相似比為1:2
,
而△ABC的面積為m,
∴△A′B′C′的面積=4m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yy在第一象限內(nèi)的圖象如圖,點Py的圖象上一動點,PCx軸于點C,交y的圖象于點B.給出如下結(jié)論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CAAP.其中所有正確結(jié)論的序號是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某購物中心試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價且獲利不得高于 50%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件與銷售單價x(元的關(guān)系符合一次函數(shù)yx140.

(1)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價為多少元時,可獲得最大利潤?最大利潤是多少元?

(2)當獲得利潤為1200元時,求銷售單價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1.有下列結(jié)論:①b2=4ac ②abc>0 ③a>c ④4a+c>2b.其中結(jié)論正確的個數(shù)是( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點邊上一點,且AD=3cm,動點從點出發(fā)沿線段向終點運動.作,與邊相交于點

找出圖中的一對相似三角形,并說明理由;

為等腰三角形時,求的長;

求動點從點出發(fā)沿線段向終點運動的過程中點的運動路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸為直線x=1,與x軸的一個交點坐標為A(3,0),其部分圖象如圖所示,下列結(jié)論中: ; ②方程的兩個根是; ;⑤當0<x<3時,yx增大而減。黄渲薪Y(jié)論正確的個數(shù)是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊答案