【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BEAC,AEOB

1)求證:四邊形AEBD是菱形;

2)如果OA=4OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.

【答案】1)見解析;(2

【解析】

1)連接DE,交ABF,先證明四邊形AEBD是平行四邊形,再由矩形的性質(zhì)得出DA=DB,證出四邊形AEBD是菱形;
2)由菱形的性質(zhì)得出ABDE互相垂直平分,求出EFAF,得出點E的坐標;設經(jīng)過點E的反比例函數(shù)解析式為:,把點E坐標代入求出k的值得出反比例函數(shù)的解析式.

1)證明:∵BEAC,AEOB,

∴四邊形AEBD是平行四邊形,

∵四邊形OABC是矩形,

∴四邊形AEBD是菱形

2)解:連接DE

ABF,

如圖所示:

∵四邊形AEBD是菱形,

ABDE互相垂直平分,

OA=4,OC=2,

∴點E坐標為:

6,1),

設經(jīng)過點E的反比例函數(shù)解析式為:

,∴

∴經(jīng)過點E的反比例函數(shù)解析式為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB, AB 之間的距離為 2 ,C、D 是直線兩個動點(點 C D 點的左側),且 AB=CD=5.連接 AC、BCBD,將ABC 沿 BC 折疊得到A′BC.若以 A′、CBD 為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB6cm,BC12cm,點P從點A出發(fā),沿AB邊向點B以每秒1cm的速度移動,同時,點Q從點B出發(fā)沿BC邊向點C以每秒2cm的速度移動,如果P、Q兩點在分別到達BC兩點后就停止移動,回答下列問題:

1)當運動開始后1秒時,求△DPQ的面積;

2)當運動開始后秒時,試判斷△DPQ的形狀;

3)在運動過程中,存在這樣的時刻,使△DPQPD為底的等腰三角形,求出運動時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某商品標牌的示意圖,⊙O與等邊△ABC的邊BC相切于點C,且⊙O的直徑與△ABC的高相等,已知等邊△ABC邊長為4,設⊙OAC相交于點E,則AE的長為(  )

A.B.1C.1D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形ABCD中,點PCD上一點,連接BP

1)如圖1,若BPCD,菱形ABCD邊長為10,PD4,連接AP,求AP的長.

2)如圖2,連接對角線AC、BD相交于點O,點NBP的中點,過PPMACM,連接ON、MN.試判斷MON的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點A(0,2),B(10)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+ca≠0)經(jīng)過點D

1)如圖1,若該拋物線經(jīng)過原點O,且a=-

①求點D的坐標及該拋物線的解析式;

②連結CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;

2)如圖2,若該拋物線y=ax2+bx+ca≠0)經(jīng)過點E11),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數(shù)是3個,請直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AEFG,點EBD上;

1)求證:FDAB;(2)連接AF,求證:∠DAF=∠EFA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明站在某廣場一看臺C處,從眼睛D處測得廣場中心F的俯角為21°,若CD=1.6米,BC=1.5米,BC平行于地面FA,臺階AB的坡度為i=34,坡長AB=10米,則看臺底端A點距離廣場中心F點的距離約為(參考數(shù)據(jù):sin21°≈0.36cos21°≈0.93,tan21°≈0.38)(  )

A.8.8B.9.5C.10.5D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形的邊長為1,點邊上的一個動點(與,不重合),以為頂點在所在直線的上方作

1)當經(jīng)過點時,

①請直接填空:________(可能,不可能)過點:(圖1僅供分析)

②如圖2,在上截取,過點作垂直于直線,垂足為點,作,求證:四邊形為正方形;

③如圖2,將②中的已知與結論互換,即在上取點點在正方形外部),過點作垂直于直線,垂足為點,作,若四邊形為正方形,那么是否相等?請說明理由;

2)當點在射線上且不過點時,設交邊,且.在上存在點,過點作垂直于直線,垂足為點,使得,連接,則當為何值時,四邊形的面積最大?最大面積為多少?

查看答案和解析>>

同步練習冊答案