【題目】尺規(guī)作圖:作線段AB的垂直平分線MN,并證明該作圖所得到的MN就是線段AB的垂直平分線.
【答案】見解析.
【解析】
分別以A、B為圓心,以大于AB為半徑畫弧,兩弧交于兩點(diǎn),過這兩點(diǎn)作直線即可;根據(jù)作法和圖形,寫出已知求證,再利用△AMN≌△BMN得出△AMB是等腰三角形,進(jìn)而得出MN⊥AB,MN平分AB.
解:如圖,直線MN即為所求;
作法:(1)分別以A、B為圓心,大于AB的同樣長為半徑作弧,兩弧分別交于點(diǎn)M、N;
(2)作直線MN.
直線MN即為所求作的線段AB的垂直平分線;
已知:如圖,連接AM、BM、AN、BN,AM=AN=BM=BN.
求證:MN⊥AB,MN平分AB.
證明:設(shè)MN與AB交于點(diǎn)O.
∵在△AMN和△BMN中,
,
∴△AMN≌△BMN(SSS).
∴∠AMN =∠BMN.
∵AM=BM,
∴△AMB是等腰三角形.
∴MO⊥AB,AO=BO.
即MN⊥AB,MN平分AB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),
沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B.已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn).連結(jié)MP,MQ,PQ.在整個(gè)運(yùn)動(dòng)過程中,△MPQ的面積大小變化情況是【 】
A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD中,,繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、或它們的延長線于點(diǎn)M、N,當(dāng)繞點(diǎn)A旋轉(zhuǎn)到時(shí)如圖,則
線段BM、DN和MN之間的數(shù)量關(guān)系是______;
當(dāng)繞點(diǎn)A旋轉(zhuǎn)到時(shí)如圖,線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;
當(dāng)繞點(diǎn)A旋轉(zhuǎn)到如圖的位置時(shí),線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形與直角三角形的斜邊在同一直線上,,,平分,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),記為,在旋轉(zhuǎn)過程中:
(1)如圖,當(dāng)______時(shí),,當(dāng)______時(shí),;
(2)如圖,當(dāng)頂點(diǎn)在內(nèi)部時(shí),邊、分別交、的延長線于點(diǎn)、,記,.
①與度數(shù)的和是否變化?若不變,求出與度數(shù)和;若變化,請說明理由;
②若使得,求出、的度數(shù),并直接寫出此時(shí)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為 的正方形 的一邊 與直角邊分別是 和 的 的一邊 重合.正方形 以每秒 個(gè)單位長度的速度沿 向右勻速運(yùn)動(dòng),當(dāng)點(diǎn) 和點(diǎn) 重合時(shí)正方形停止運(yùn)動(dòng).設(shè)正方形的運(yùn)動(dòng)時(shí)間為 秒,正方形 與 重疊部分面積為S,則S關(guān)于 的函數(shù)圖象為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩人在道路的兩邊相向而行,當(dāng)甲、乙兩人分別行至點(diǎn)A、C時(shí),測得乙在甲的北偏東60°方向上.乙留在原地休息,甲繼續(xù)向前走了40米到B處,此時(shí)測得乙在其北偏東30°方向上.求道路的寬(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)
(2)寫出∠DAE與∠C-∠B的數(shù)量關(guān)系,并證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中BC邊上的垂直平分線DE與∠BAC得平分線交于點(diǎn)E,EF⊥AB交AB的延長線于點(diǎn)F,EG⊥AC交于點(diǎn)G.
求證:(1)BF=CG;(2)AF=(AB+AC).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com