【題目】如圖,矩形ABCD接于半徑為2.5OAB=4, 延長(zhǎng)BAE,使AE=,連接ED

(1)求證:直線EDO的切線;

(2)連接EOADF,求FO的長(zhǎng).

【答案】(1)見(jiàn)解析;(2).

【解析】分析:(1)連結(jié)BD.由ABCD是矩形,得到BD的長(zhǎng).在RtABD中,由勾股定理得到AD的長(zhǎng).在RtAED中,由勾股定理得到ED2.在△BED中,由勾股定理得到BE2,從而得到BD2=BE2-ED2,由勾股定理的逆定理得到∠BDE90°,從而得到結(jié)論.

2)過(guò)點(diǎn)OOHABH,由垂徑定理得到AH=BH=2.由三角形中位線定理得到OH=AD=1.5.在RtEHO中,由勾股定理得到EO的長(zhǎng).再由OHAD,得到,從而得到結(jié)論.

詳解:(1)連結(jié)BD

ABCD是矩形,∴∠BAD90°,∴BD是直徑,∴BD5

RtABD中,AD==3,

EAD180°-∠BAD90°.

RtAED中,ED2=AD2+AE2=

在△BED中,BE2=(4+ )2=,BD2=25,BE2-ED2=-=25,

BD2=BE2-ED2,∴∠BDE90°.

又∵BD是直徑,∴ED是⊙O的切線.

2)過(guò)點(diǎn)OOHABH,則AH=BH=AB=2

又∵OB=OD,∴OH=AD=1.5

RtEHO中,EO==

∵∠OHB=∠DAB90°,∴OHAD

OF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為Q(2,-1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PDy軸,交AC于點(diǎn)D.

【1】求該拋物線的函數(shù)關(guān)系式;

【1】求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段PD的最大值;

【1】當(dāng)ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);

【1】在題(3)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問(wèn)是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a、b表示,且(a-202+|b+10|=0,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).

1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離;

2)已知線段OB上有點(diǎn)C|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù);

3)動(dòng)點(diǎn)P從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度,第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,…….點(diǎn)P能移動(dòng)到與AB重合的位置嗎?若不能,請(qǐng)直接回答;若能,請(qǐng)直接指出,第幾次移動(dòng),與哪一點(diǎn)重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一長(zhǎng)方形休閑廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓的花壇,正中設(shè)計(jì)一個(gè)圓形噴水池,若四周圓形和中間圓形的半徑均為米,廣場(chǎng)長(zhǎng)為米,寬為米.

(1)請(qǐng)列式表示廣場(chǎng)空地的面積;

(2)若休閑廣場(chǎng)的長(zhǎng)為400米,寬為300米,圓形花壇的半徑為20米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對(duì)應(yīng)點(diǎn)D′之間的距離為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明元旦節(jié)吃完晚飯后6點(diǎn)過(guò)還沒(méi)到7點(diǎn),他陪他媽到成華區(qū)SM廣場(chǎng)去買(mǎi)東西,離家時(shí)他發(fā)現(xiàn)他家的時(shí)鐘上時(shí)針與分針剛好重合,他離家的時(shí)間是_______(用幾點(diǎn)幾分幾秒表示,注意四舍五入”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘉淇同學(xué)要證明命題兩組對(duì)邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫(xiě)出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補(bǔ)全已知和求證;

(2)按嘉淇同學(xué)的思路寫(xiě)出證明過(guò)程;

(3)用文字?jǐn)⑹鏊C命題的逆命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是邊長(zhǎng)為的等邊ABC的內(nèi)心,將OBC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°得到OB1C1,B1C1BC于點(diǎn)D,B1C1AC于點(diǎn)E,則CE=( )

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用火柴棒按如圖方式拼圖,第1個(gè)圖形共用3根火柴棒,第2個(gè)圖形共用9根火柴棒,第3個(gè)圖形共用18根火柴棒,……按照這樣的方式繼續(xù)拼圖,第n個(gè)圖形共用_____根火柴棒.(用含n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案