【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,1),點B的坐標(biāo)為(2,9),點C到直線AB的距離為4,且△ABC是直角三角形,則滿足條件的點C有_____個.
【答案】6
【解析】
按照頂點分別是直角時分類討論:當(dāng)∠A=90°時,滿足條件的C點2個;當(dāng)∠B=90°時,滿足條件的C點2個;當(dāng)∠C=90°時,滿足條件的C點2個.所以共有6個.
解:∵點A,B的橫坐標(biāo)坐標(biāo)相等,
∴AB//y軸,
∵點C到直線AB的距離為4,
∴點C在平行于AB的兩條直線l1和l2上,如下圖所示:
∴當(dāng)A為直角頂點時,過點A的垂線與直線l1和l2有2個交點為C1和C2;
當(dāng)B為直角頂點時,過點B的垂線與直線l1和l2有2個交為C3和C4;
當(dāng)C為直角頂點時,如上圖,與直線l1和l2有2個交為C5和C6.
∴滿足條件的C點共6個.
故答案為:6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開始,繞點B按順時針方向旋轉(zhuǎn),與射線BC重合時就停止旋轉(zhuǎn),射線BD與線段AC相交于點D,點M是線段BD的中點.
(1)求線段BC的長;
(2)①當(dāng)點D與點A、點C不重合時,過點D作DE⊥AB于點E,DF⊥BC于點F,連接ME,MF,在射線BD旋轉(zhuǎn)的過程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數(shù);若變化,請說明理由.
②在①的條件下,連接EF,直接寫出△EFM面積的最小值______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并解答后面的問題.
在學(xué)習(xí)了直角三角形的邊角關(guān)系后,小穎和小明兩個學(xué)習(xí)小組繼續(xù)探究任意銳角三角形的邊角關(guān)系:在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c.
(1)小明學(xué)習(xí)小組發(fā)現(xiàn)如下結(jié)論:
如圖1,過A作AD⊥BC于D,則sinB=,sinC=即AD=csinB,AD=bsinC,于是_____=______即,同理有,
則有
(2)小穎學(xué)習(xí)小組則利用圓的有關(guān)性質(zhì)也得到了類似的結(jié)論:
如圖2,△ABC的外接圓半徑為R,連結(jié)CO并延長交⊙O于點D,連結(jié)DB,則∠D=∠A,
∵CD為⊙O的直徑,∴∠DBC=90°,
在Rt△DBC中,
∵,
∴,
同理:,
則有
請你將這一結(jié)論用文字語言描述出來: .
小穎學(xué)習(xí)小組在證明過程中略去了“”的證明過程,請你把“”的證明過程補(bǔ)寫出來.
(3)直接用前面閱讀材料中得出的結(jié)論解決問題
規(guī)劃局為了方便居民,計劃在三個住宅小區(qū)A、B、C之間修建一座學(xué)校,使它到三個住宅小區(qū)的距離相等,已知小區(qū)C在小區(qū)B的正東方向千米處,小區(qū)A在小區(qū)B的東北方向,且A與C之間相距千米,求學(xué)校到三個小區(qū)的距離及小區(qū)A在小區(qū)C的什么方向?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,點分別是的中點,連接.
(1)探索發(fā)現(xiàn):
圖1中,的值為_____________;的值為_________.
(2)拓展探究
若將繞點逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
當(dāng)旋轉(zhuǎn)至三點在同一直線時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物業(yè)公司計劃對所管理的小區(qū)3000m2區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個工程隊來完成,甲、乙兩個工程隊每天共完成綠化面積150m2,甲隊完成600m2區(qū)域的綠化面積與乙隊完成300m2區(qū)域的綠化面積所用的天數(shù)相同.
(1)求甲、乙兩個工程隊每天各能完成多少面積的綠化?
(2)若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用是0.2萬元,該物業(yè)公司要使這次綠化總費用不超過17萬元,則至少安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格,每個小正方形的邊長都為1,線段AB的端點落在格點上,要求畫一個四邊形,所作的四邊形為中心對稱圖形,同時滿足下列要求:
(1)在圖1中畫出以AB為一邊的四邊形;
(2)分別在圖2和圖3中各畫出一個以AB為一條對角線的四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1的解析式為,直線l2的解析式為,與x軸、y軸分別交于點A、點B,直線l1與l2交于點C.
(1)求點A、點B、點C的坐標(biāo),并求出△COB的面積;
(2)若直線l2上存在點P(不與B重合),滿足S△COP=S△COB,請求出點P的坐標(biāo);
(3)在y軸右側(cè)有一動直線平行于y軸,分別與l1,l2交于點M、N,且點M在點N的下方,y軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請直接寫出滿足條件的點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸相交于點A(-3,0)、點B(1,0),與y軸交于點C(0,3),點D是第二象限內(nèi)拋物線上一動點.F點坐標(biāo)為(-4,0).
(1)求這條拋物線的解析式;并寫出頂點坐標(biāo);
(2)當(dāng)D為拋物線的頂點時,求△ACD的面積;
(3)連接OD交線段AC于點E.當(dāng)△AOE與△ABC相似時,求點D的坐標(biāo);
(4)在x軸上方作正方形AFMN,將正方形AFMN沿x軸下方向向右平移t個單位,其中0≤t≤4,設(shè)正方形AFMN與△ABC的重疊總分面積為S,直接寫出S關(guān)于t的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com