精英家教網 > 初中數學 > 題目詳情

【題目】在平面坐標系中,正方形的位置如圖所示,點的坐標為,點的坐標為,延長軸于點,作正方形,正方形的面積為______,延長軸于點,作正方形,……按這樣的規(guī)律進行下去,正方形的面積為______.

【答案】11.25

【解析】

推出AD=AB,∠DAB=ABC=ABA1=90°=DOA,求出∠ADO=BAA1,證△DOA∽△ABA1,再求出ABBA1,面積即可求出;求出第2個正方形的邊長;再求出第3個正方形邊長;依此類推得出第2019個正方形的邊長,求出面積即可.

∵四邊形ABCD是正方形,
AD=AB,∠DAB=ABC=ABA1=90°=DOA,
∴∠ADO+DAO=90°,∠DAO+BAA1=90°,
∴∠ADO=BAA1,
∵∠DOA=ABA1,
∴△DOA∽△ABA1
,
AB=AD=
BA1=,
∴第2個正方形A1B1C1C的邊長A1C=A1B+BC=,

2個正方形A1B1C1C的面積()2=11.25
同理第3個正方形的邊長是=2
4個正方形的邊長是(3,,
2019個正方形的邊長是(2018,

面積是[2018]2=5×(2018×2=

故答案為:(1)11.25(2)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某坦克部隊需要經過一個拱橋(如圖所示),拱橋的輪廓是拋物線形,拱高OC6m,跨度AB20m,有5根支柱:AG、MN、CDEF、BH,相鄰兩支柱的距離均為5m

1)以AB的中點為原點,AB所在直線為x軸,支柱CD所在直線為y軸,建立平面直角坐標系,求拋物線的解析式;

2)若支柱每米造價為2萬元,求5根支柱的總造價;

3)拱橋下面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道是坦克的行進方向,現每輛坦克長4m,寬2m,高3m,行駛速度為24km/h,坦克允許并排行駛,坦克前后左右距離忽略不計,試問120輛該型號坦克從剛開始進入到全部通過這座長1000m的拱橋隧道所需最短時間為多少分鐘?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數的部分圖象如圖所示,圖象過點,對稱軸為直線,下列結論:①;②;③一元二次方程的解是;④當時,,其中正確的結論有__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長度為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的布袋里裝有個標號分別為的小球,這些球除標號外無其它差別.從布袋里隨機取出一個小球,記下標號為,再從剩下的個小球中隨機取出一個小球,記下標號為記點的坐標為

(1)請用畫樹形圖或列表的方法寫出點所有可能的坐標;

(2)求兩次取出的小球標號之和大于的概率;

(3)求點落在直線上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=-x+b與雙曲線分別相交于點A,B,CD,已知點A的坐標為(-1,4),且ABCD=52,則m=_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是水平放置的水管截面示意圖,已知水管的半徑為50cm,水面寬AB=80cm,則水深CD約為______cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°,AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,,點在直線上,,點邊的中點,連接,射線于點,則的值為________.

查看答案和解析>>

同步練習冊答案