△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,如果a2+b2=c2,那么下列結(jié)論正確的是( )
A.csinA=a
B.bcosB=c
C.a(chǎn)tanA=b
D.ctanB=b
【答案】分析:由于a2+b2=c2,根據(jù)勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根據(jù)銳角三角函數(shù)的定義即可得到正確選項.
解答:解:∵a2+b2=c2,
∴△ABC是直角三角形,且∠C=90°.
A、sinA=,則csinA=a.故本選項正確;
B、cosB=,則cosBc=a.故本選項錯誤;
C、tanA=,則=b.故本選項錯誤;
D、tanB=,則atanB=b.故本選項錯誤.
故選A.
點評:本題考查了銳角三角函數(shù)的定義和勾股定理的逆定理.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,DE∥BC,DE與AB相交于D,與AC相交于E,若AC=8,EC=3,DB=4,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,則a+c=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC=2,AB=3,D是AC上一點,E是AB上一點,且∠ADE=∠B,設(shè)AD=x,AE=y,則y與x之間的函數(shù)關(guān)系式是( 。
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=8,AC=6,BC=7,點D在AC上,AD=2,
(1)過點D畫直線,使它截△ABC的兩邊所得的小三角形與△ABC相似(圖形備用,標(biāo)出與∠B相等的角);
(2)若截線與AB交于E,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、在△ABC中,AB=3,BC=8,則AC的取值范圍是
5<AC<11

查看答案和解析>>

同步練習(xí)冊答案