【題目】在一次數(shù)學(xué)課上,老師對大學(xué)說:你任意想一個非零實(shí)數(shù),然后按下列步驟操作,我會直接說出你運(yùn)算的最后結(jié)果

操作步驟如下:

第一步:計(jì)算這個數(shù)與1的和的平方,減去這個數(shù)與1的差的平方

第二步:把第一步得到的數(shù)乘以25

第三步:把第二步得到的數(shù)除以你想的這個數(shù)

1)若小明同學(xué)心里想的是數(shù)9,請幫他計(jì)算出最后結(jié)果:

.

2)老師說:同學(xué)們,無論你們心里想的是什么非零實(shí)數(shù),按照以上步驟進(jìn)行操作,得到的最后結(jié)果都相等,小明同學(xué)想驗(yàn)證這個結(jié)論,于是,設(shè)心里想的數(shù)是aa0),請你幫小明完成這個驗(yàn)證過程

【答案】1100;(2)見解析;

【解析】

1)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;
2)根據(jù)題意列出關(guān)系式,化簡得到結(jié)果,驗(yàn)證即可.

解:(1[9+12-9-12]×25÷9
=18×2×25÷9
=100;
2[a+12-a-12]×25÷a
=4a×25÷a
=100

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊的頂點(diǎn)分別在等邊各邊上,且,若,則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過點(diǎn)A(1,);點(diǎn)F(0,1)在y軸上.直線y=﹣1y軸交于點(diǎn)H.

(1)求二次函數(shù)的解析式;

(2)點(diǎn)P是(1)中圖象上的點(diǎn),過點(diǎn)Px軸的垂線與直線y=﹣1交于點(diǎn)M.

求證:PFM為等腰三角形;

(3)作PQFM于點(diǎn)Q,當(dāng)點(diǎn)P從橫坐標(biāo)2013處運(yùn)動到橫坐標(biāo)2017處時,請求出點(diǎn)Q運(yùn)動的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,四邊形ABCD中,AB=7,BC=3,ABC=ACD=ADC=45°,求BD的長;

(2)如圖2,在(2)的條件下,當(dāng)ACD在線段AC的左側(cè)時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)六七年級有350名同學(xué)去春游,已知2A型車和1B型車可以載學(xué)生100人;1A型車和2B型車可以載學(xué)生110人.

1A、B型車每輛可分別載學(xué)生多少人?

2)若租一輛A需要100元,一輛B120元,請你設(shè)計(jì)租車方案,使得恰好運(yùn)送完學(xué)生并且租車費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCDA = D,試說明 ACDE 成立的理由.

下面是彬彬同學(xué)進(jìn)行的推理,請你將彬彬同學(xué)的推理過程補(bǔ)充完整。

解:∵ AB CD (已知)

A = (兩直線平行,內(nèi)錯角相等)

又∵ A = D( )

= (等量代換)

AC DE ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么DAC的度數(shù)為(  )

A. 90° B. 80° C. 70° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅星期天從家里出發(fā)騎自行車去舅舅家,當(dāng)她騎了一段路時,想起要買個禮物送給表弟,于是又折回到剛經(jīng)過的一家商店,買好禮物后又繼續(xù)騎車去舅舅家,如圖是她本次去舅舅家所用的時間與路程的關(guān)系式示意圖.根據(jù)圖中提供的信息回答下列問題:

1)小紅家到舅舅家的路程是_______米,小紅在商店停留了_______分鐘;

2)在整個去舅舅家的途中哪個時間段小紅騎車速度最快,最快的速度是多少米/分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,A,B的平分線交于點(diǎn)DDEBC于點(diǎn)E,DFAC于點(diǎn)F

求證:四邊形CFDE是正方形; AC=3,BC=4,求ABC的內(nèi)切圓半徑.

查看答案和解析>>

同步練習(xí)冊答案