【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(-4,5),并與y軸交于點(diǎn)C,拋物線的對(duì)稱軸為直線x=-1,且拋物線與x軸交于另一點(diǎn)B.

(1)求該拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;

(3)如圖2,若點(diǎn)M是直線x=-1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說明理由.

【答案】(1)拋物線的表達(dá)式為y=x2+2x-3;(2)ACE的面積的最大值為;(3)當(dāng)點(diǎn)M的坐標(biāo)為(-1,26)或(-1,16)或(-1,8)時(shí)以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能成為平行四邊形.

【解析】試題分析:(1)先利用拋物線的對(duì)稱性確定出點(diǎn)B的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x+3)(x-1),將點(diǎn)D的坐標(biāo)代入求得a的值即可;

(2)過點(diǎn)EEFy軸,交AD與點(diǎn)F,過點(diǎn)CCHEF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)ACE的面積=EFA的面積-EFC的面積列出三角形的面積與m的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求得ACE的最大值即可;

(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y),利用平行四邊形對(duì)角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對(duì)應(yīng)的y值,然后依據(jù),可求得a的值;當(dāng)AD為平行四邊形的邊時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a).則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),將點(diǎn)N的坐標(biāo)代入拋物線的解析式可求得a的值.

試題解析(1)A(1,0),拋物線的對(duì)稱軸為直線x=-1,

B(-3,0),

設(shè)拋物線的表達(dá)式為y=a(x+3)(x-1),

將點(diǎn)D(-4,5)代入,得5a=5解得a=1,

拋物線的表達(dá)式為y=x2+2x-3;

(2)過點(diǎn)E作EFy,交AD與點(diǎn)F,交x軸于點(diǎn)G過點(diǎn)C作CH⊥EF,垂足為H.

設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1).

EF=-m+1-m2-2m+3=-m2-3m+4.

SACE=SEFA-SEFCEF·AG-EF·HC=EF·OA=- (m+)2.

ACE的面積的最大值為;

(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí):

設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y).

平行四邊形的對(duì)角線互相平分,

, ,

解得x=-2,y=5-a,

將點(diǎn)N的坐標(biāo)代入拋物線的表達(dá)式,得5-a=-3

解得a=8,

點(diǎn)M的坐標(biāo)為(-1,8),

當(dāng)AD為平行四邊形的邊時(shí):

設(shè)點(diǎn)M的坐標(biāo)為(-1,a),則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),

將x=-6,y=a+5代入拋物線的表達(dá)式得a+5=36-12-3,解得a=16,

M(-1,16),

將x=4,y=a-5代入拋物線的表達(dá)式得a-5=16+8-3,解得a=26,

M(-1,26),

綜上所述,當(dāng)點(diǎn)M的坐標(biāo)為(-1,26)或(-1,16)或(-1,8)時(shí),以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能成為平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校八年級(jí)有800名學(xué)生,在體育中考前進(jìn)行一次排球模擬測(cè)試,從中隨機(jī)抽取部分學(xué)生,根據(jù)其測(cè)試成績制作了下面兩個(gè)統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

1)本次抽取到的學(xué)生人數(shù)為________,圖2的值為_________

2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是__________,眾數(shù)是________,中位數(shù)是_________

3)根據(jù)樣本數(shù)據(jù),估計(jì)我校八年級(jí)模擬體測(cè)中得12分的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5cmAC3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為等腰三角形時(shí),t的取值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,拋物線y=x2+x﹣x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))與y軸交于點(diǎn)C,直線BEBC與點(diǎn)B,與拋物線的另一交點(diǎn)為E.

(1)如圖1,求點(diǎn)E的坐標(biāo);

(2)如圖2,若點(diǎn)Px軸下方拋物線上一動(dòng)點(diǎn),過PPGBE與點(diǎn)G,當(dāng)PG長度最大時(shí),在直線BE上找一點(diǎn)M,使得△APM的周長最小,并求出周長的最小值.

(3)如圖3,將△BOC在射線BE上,設(shè)平移后的三角形為△B′O′C′,B′在射線BE上,若直線B′C′分別與x軸、拋物線的對(duì)稱軸交于點(diǎn)R、T,當(dāng)△O′RT為等腰三角形時(shí),求R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABD是O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.

(1)求證:BC是O的切線;

(2)若O的半徑為6,BC=8,求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4②b2﹣4ac0;③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有( 。﹤(gè)

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)EAE=2,EB=6,DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象經(jīng)過點(diǎn)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)的圖象上,過點(diǎn)BBCx軸,交y軸于點(diǎn)C,且AC=AB.求:

(1)這個(gè)反比例函數(shù)的解析式;

(2)直線AB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在用頻率估計(jì)概率的試驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗(yàn)最有可能的是( 。

A. 在裝有1個(gè)紅球和2個(gè)白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個(gè)球是白球

B. 從一副撲克牌中任意抽取一張,這張牌是紅色的

C. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是正面朝上

D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是6

查看答案和解析>>

同步練習(xí)冊(cè)答案