【題目】如圖物體由兩個(gè)圓錐組成,其主視圖中,.若上面圓錐的側(cè)面積為1,則下面圓錐的側(cè)面積為( )

A. 2B. C. D.

【答案】D

【解析】

先證明△ABD為等腰直角三角形得到∠ABD45°,BDAB,再證明△CBD為等邊三角形得到BCBDAB,利用圓錐的側(cè)面積的計(jì)算方法得到上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于ABCB,從而得到下面圓錐的側(cè)面積.

∵∠A90°,ABAD,

∴△ABD為等腰直角三角形,

∴∠ABD45°,BDAB,

∵∠ABC105°,

∴∠CBD60°,

CBCD,

∴△CBD為等邊三角形,

BCBDAB,

∵上面圓錐與下面圓錐的底面相同,

∴上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于ABCB,

∴下面圓錐的側(cè)面積=×1

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè)(記為A1,A2,A3),黑球2個(gè)(記為B1,B2).

(1)若先從袋中取出m(m>0)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為 ②若A為隨機(jī)事件,則m的取值為

(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用樹狀圖或列表法求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去興化李中水上森林游玩.

1)小明和小剛都在本周日上午去游玩的概率為

2)求他們?nèi)嗽谕粋(gè)半天去游玩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣1,圖象經(jīng)過B(﹣30)、C03)兩點(diǎn),且與x軸交于點(diǎn)A

1)求二次函數(shù)yax2+bx+ca≠0)的表達(dá)式;

2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使ACM周長(zhǎng)最短,求出點(diǎn)M的坐標(biāo);

3)若點(diǎn)P為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直接寫出使BPC為直角三角形時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價(jià)是80元/kg,銷售單價(jià)不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時(shí)間后得到如下數(shù)據(jù):

銷售單價(jià)x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設(shè)y與x的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.

(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;

(2)當(dāng)銷售單價(jià)為多少時(shí),銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正六邊形ABCDEF的對(duì)稱中心P在反比例函數(shù)的圖象上,邊CDx軸上,點(diǎn)By軸上.已知

1)點(diǎn)A是否在該反比例函數(shù)的圖象上?請(qǐng)說明理由.

2)若該反比例函數(shù)圖象與DE交于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo).

3)平移正六邊形ABCDEF,使其一邊的兩個(gè)端點(diǎn)恰好都落在該反比例函數(shù)的圖象上,試描述平移過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動(dòng)、娛樂、上網(wǎng)等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有1500名學(xué)生,估計(jì)愛好運(yùn)動(dòng)的學(xué)生有   人;

(4)在全校同學(xué)中隨機(jī)選取一名學(xué)生參加演講比賽,用頻率估計(jì)概率,則選出的恰好是愛好閱讀的學(xué)生的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以線段AB上的點(diǎn)O為圓心,0B為半徑作圓O,分別與邊AB,BC相交于DE兩點(diǎn),過點(diǎn)EEFACF.

(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由.

(2)OB=3,cosB,求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)部某一玩具價(jià)格如圖所示,現(xiàn)有甲、乙兩個(gè)商店,計(jì)劃在“六一”兒童節(jié)前到該批發(fā)部購(gòu)買此類玩具.兩商店所需玩具總數(shù)為120個(gè),乙商店所需數(shù)量不超過50個(gè),設(shè)甲商店購(gòu)買個(gè).如果甲、乙兩商店分別購(gòu)買玩具,兩商店需付款總和為y元.

(1)求y關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)若甲商店購(gòu)買不超過100個(gè),請(qǐng)說明甲、乙兩商店聯(lián)合購(gòu)買比分別購(gòu)買最多可節(jié)約多少錢;

(3)“六一”兒童節(jié)之后,該批發(fā)部對(duì)此玩具價(jià)格作了如下調(diào)整:數(shù)量不超過100個(gè)時(shí),價(jià)格不變;數(shù)量超過100個(gè)時(shí),每個(gè)玩具降價(jià)a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案